Microbiological Hydroxylation of Steroids. Part IV. ${ }^{1}$ The Pattern of Dihydroxylation of Mono-oxygenated 5α-Androstanes with Cultures of the Fungus Calonectria decora

By A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins,* and P. D. Woodgate, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

Abstract

The work is concerned with the relation between the pattern of the dihydroxylation by Calonectria decora of monooxygenated 5α-androstane derivatives (mainly ketones). and the position of the oxygen function in the substrate. Terminal ring ketones (3.4.16. and 17) are converted. in useful yields. into one or two dihydroxy-ketones. (Ring B and c ketones are much less satisfactory as substrates.) The structures of most of the products followed from spectrometric investigations: this approach was supplemented by chemical correlations where necessary

The two hydroxy-groups are introduced on to carbon atoms separated by about $4 \AA$ from one another. The distances of these centres from the carbonyl group are more variable. although with the 3-. 4-. 16-. and 17-ketones the correspondence is gratifyingly close and may have predictive value.

UPPERMOST among the objects of our microbiological hydroxylation studies was that of converting natural or synthetic materials into more useful products. In particular, hydroxylation by fungal cultures seemed promising for preparing relatively inaccessible steroids; some examples have already been described. ${ }^{1,2}$ The introduction of one or more hydroxy-groups into synthetic materials could make polyfunctional compounds more readily available and we have achieved this in the hydrochrysene series. ${ }^{3}$ A group at the Upjohn Company ${ }^{4}$ has shown that Sporotrichum sulfurescens effectively monohydroxylates macrocyclic alcohols (e.g. cyclodecanol) and acyl derivatives of cyclic amines (cyclododecylamine) and azacycloalkanes (octamethyleneimine).
${ }^{1}$ Part III, J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.
${ }^{2}$ J. E. Bridgeman, P. C. Cherry, Sir Ewart R. H. Jones, and G. D. Meakins, Chem. Comm., 1967, 482; A. S. Clegg, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, ibid., 1970, 1029.

Nearly all the literature on the microbiological hydroxylation of steroids ${ }^{5}$ refers to substrates having an oxygen atom at $\mathrm{C}-3$. Further, most of the substrates studied contain the 3 -oxo- Δ^{4}-system, since it confers useful physiological properties on steroids. These features, together with the equally ubiquitous presence of substituents, often complicated, at C-17 could well have a dominating influence on the position and extent of hydroxylation by micro-organisms. In order to ascertain whether there are more general patterns of hydroxylation it was essential to depart from this uniformity of substrate structure. The same idea had prompted the investigations of the Upjohn group, ${ }^{6}$
${ }^{3}$ M. J. Ashton, D.Phil. Thesis, Oxford, 1972.
${ }^{4}$ M. E. Herr, R. A. Johnson, W. C. Krueger, H. C. Murray, and L. M. Pschigoda, J. Org. Chem., 1970, 35, 3607, and references cited therein.
${ }^{5}$ Inter alia, W. Charney and H. L. Herzog, 'Microbial Transformations of Steroids,' Academic Press, New York, 1967, the most comprehensive of many reviews.
${ }^{6}$ G. S. Fonken, M. E. Herr, H. C. Murray, and L. M. Reineke, J. Org. Chem., 1967, 32, 672.

Hydroxylation of androstanes and estranes by Calonectria decora

5α-Androstane

5 α-Estrane

In the 'Products' column those oxygen functions introduced during the incubation are in bold type. The entries under 'Conditions' refer to the use of ethanol (E) and dimethyl sulphoxide (D) as solvents for the substrate and to the time of incubation (in days).

Table 1
Substantial conversions into one or two products

Table 2

Table 3
Hydroxylation of some 3 -substituted 5α-androstanes

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{12}{*}{Substrate

$3 \beta-\mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}=\mathrm{CH}_{2}$
$3 \beta-\mathrm{O} \cdot \mathrm{CO}_{2}\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{M}$
$3 \beta-\mathrm{CH}$
3}}

\hline \&

\hline
\end{tabular}

who had been ' struck by the apparent lack of a rational explanation for the selection by a given micro-organism of the particular carbon atom to be oxygenated.'

The first stage of our studies was to screen a range of micro-organisms, known to hydroxylate steroids, with as substrates a series of mono- and dioxygenated 5α-androstanes in which the positions of the substituents around the steroid nucleus varied systematically. This paper describes the results obtained with several mono-substituted 5α-androstanes, and a few androstenes, and cultures of the fungus Calonectria decora (Wallr.), Sacc. ${ }^{7}$

Explanation of the form and order used in presenting the results. Our intention is to report most of the microbiological work, under the headings of the organisms used, in papers (such as the present one) of a standard form. The following paragraphs explain the form, and show how this paper links up with the earlier publications.

The basis is the assignment of (arabic) serial numbers to the steroids (about 600 so far, many of them new) which have been used as substrates or obtained as products. These enable the details of the particular

7 Preliminary report, J. E. Bridgeman, J. W. Browne, P. C. Cherry, M. G. Combe, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, Y. Morisawa, and P. D. Woodgate, Chem. Comm., 1969, 463.
compounds and the chemical transformations to be located. In each paper the steroids involved are arranged in the order described earlier. ${ }^{8}$ So far the spectra (n.m.r. and, for the more important compounds, i.r.)
ref. 1; 376-393, ref. 10; 394-411, ref. 11; 412482, present paper. Apart from the first two papers, which are confined to spectrometric details, the serial numbers appear in the Experimental sections. The

Figure 1 Hydroxylation of :

Figure 2 Hydroxylation of:

${ }^{3} \mathrm{CO}$

$$
4 \mathrm{co}^{17} \mathrm{co}
$$

$$
{ }^{2} \mathrm{CO}
$$

Figure 3 Distances between carbon atoms hydroxylated by C. decora and the directing carbonyl group
of the following compounds have been, or are now, reported: nos. $1-344$, ref. $8 ; 345-374$, ref. 9 ; 375 ,
${ }^{8}$ J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards, and P. D. Woodgate, J. Chem. Soc. (C), 1970, 250.
${ }^{9}$ A. D. Boul, J. W. Blunt, J. W. Browne, V. Kumar, G. D. Meakins, J. T. Pinhey, and V. E. M. Thomas, J. Chem. Soc. (C), 1971, 1130.
last four papers give complete descriptions (i.e., spectra, preparations, and constants) of the compounds with the numbers shown: they also contain the preparations and constants of some of the new compounds with

[^0]numbers below 375. (The form appropriate for reporting a compound as new is used in the Experimental section giving the preparation of that compound even though its spectrometric characteristics may have appeared earlier.)

Since the main purpose of the work is to study microbiological transformations, the results of these are summarised in Tables $1-3$, and discussed before the chemical background is considered. Most of the substrates are derivatives of 5α-androstane, and are indicated in the Tables of microbiological results by abbreviated names. Substrates derived from other parents are named fully. With the products only the groups which have been introduced (bold type) or modified are specified. The yields are calculated after making allowance for recovered starting material (i.e. they refer to the composition of the steroidal material obtained after incubation and removal of starting material, and are therefore the yields that would be obtained by recycling the substrate).

The structures of many of the products follow unequivocally from the combination of spectrometric and chemical methods as explained earlier. 8,9 With others, further operations were necessary to confirm the structural features. These generally involved the conversion of selected products into simpler, known steroids, and/or the establishment of chemical interrelations. Although detailed discussion is unwarranted it is necessary to show that the structural conclusions are soundly based. The salient features of the additional work are therefore presented briefly in the Scheme; points of interest which emerged during this work are also shown there. The serial numbers of the steroids are used in the Scheme and repeated in Table 4 (n.m.r. results, immediately before the Experimental section) in order to facilitate cross-reference.

RESULTS AND DISCUSSION

There is considerable variation in the behaviour of the substrates. Some are rapidly hydroxylated whereas others are largely unchanged after 6 days incubation; some give rise to complex mixtures, others give one or two products in reasonable yields. Table 1 shows the cases in which substantial conversions occur, and give mainly single products. When allowance is made for recovered substrates, the yields are seen to be in the $15-80 \%$ range; we have not tried to find optimal conditions and it is likely that appreciable improvements could be made. The introduction of two hydroxygroups is the normal pattern, as observed by Schubert and Siebert with progesterone and 5α-pregnanolone, ${ }^{12}$ and almost all these groups have the equatorial conformation. Monohydroxylated products cannot be obtained in reasonable amounts by using shorter incubation times. (It is notable that with dimethyl sulphoxide in the medium androstan-3-one gives a trihydroxy-ketone as major product; products of further hydroxylation would probably be formed
from other substrates in Table 1 under appropriate conditions.

In the literature on steroid hydroxylation, fungi are generally classified according to which position in 3 -oxo- Δ^{4}-steroids (e.g. progesterone) they attack most frequently; on this basis Calonectria decora is recorded as a $12 \beta, 15 \alpha$-dihydroxylator. Our results confirm this for 3-oxygenated steroids but it is clear (from Tables 1 and 2) that the use of the conventional substrates has masked the versatility of this organism, and that by varying the location of a single oxygen group in the substrate, hydroxylation can be effected in other positions.

Schubert et al. ${ }^{12}$ obtained $12 \beta, 15 \alpha$-dihydroxylation exclusively with 3 -oxygenated pregnane substrates. The 3 -substituted androstane and estrane derivatives behave similarly, and the absence of a 17 -substituent does not influence the result. With the 4 -ketone the production of an equal amount of the $11 \alpha, 15 \alpha$-diol is a minor deviation from this pattern; the substitution at 11 is again equatorial and the distances between the centres involved ($c f$. Figure 1) are not very different.

The 16- and 17-oxygenated substrates (Table 1) are dihydroxylated (equatorially) in a manner akin to that of the 3 - and 4 -ketones, i.e. two equatorial hydroxygroups are introduced at distances from one another, and from the oxygen substituent in the substrate, which are closely comparable. This is illustrated in Figure 2, and can be demonstrated by rotating models through 180° about an axis through positions 8 and 9 . With the 16 -ketone, and to a lesser extent with the 17β-alcohol, the 6α-hydroxylation is accompanied by substitution at the 11α-position in preference to 1β-attack (Table 1 and Figure 2). Although C-1 and C-11 are $2.9 \AA$ apart, equatorial oxygen atoms attached to them are similarly situated with regard to the steroid molecule as a whole.

Most cases in Table 1 show a close correspondence in the distances between the carbon atoms attacked; these are $12,15-, 3 \cdot 8 \AA$; $1,6-3.9 ; 6,11-, 4 \cdot 4 ; 11,15-4 \cdot 5$. There is also similarity, though to a lesser degree, in the distances between the carbon atoms hydroxylated and the site of the original oxygen substituent. [The 15 -ketone (14α and 14β) results cannot strictly be compared with the others since the major products have the more stable but less usual 14β-configuration. Nevertheless, diequatorial substitution on carbon atoms at about the usual distances from one another is again observed.] Figure 3 depicts the relative positions of the carbon atoms hydroxylated and the substrate carbonyl group. Nine formulae have been superimposed (one is indicated in the inset), matching up the substituted carbon atoms (represented by OH) and bringing the carbonyl groups as close together as possible. The coincidence between the hydroxylated sites is very close and, although the variation in the orientation of the carbonyl group is greater, there is a

[^1]strong suggestion of a rough geometrical relationship.* Studies with the A-nor- and D-homo-ketones were not extensive (Table 2) but the patterns of disubstitution appear to follow those of the 3 - and 16 -ketones, respectively.

Substantial conversion into a major product occurs only when the oxygen function of the substrate is in ring A or ring D . With the exception of 5α-androstan12 -one, no clear patterns emerge with the ring B and C ketones (Table 2), but the susceptible $1 \beta, 6 \alpha-11 \alpha$, 12β-, and 15α-positions (Table 1) are frequently involved. (Attention has already been drawn ${ }^{13}$ to the microbiological introduction of a 3 -oxygen function.)

The polar group in the substrate may have several functions. Hydroxylation probably occurs within the cell and one of the limiting factors must be the ability of the substrate to penetrate the cell wall; thus, the solubilising effect of the polar group is likely to be an important feature. (This would explain the unreactivity of 5α-androstane and its 3β-methoxy-derivative.) The variation caused by changing the nature and the amount of the solvent used to introduce the steroid into the medium may arise from this effect.

The polar group also has a directing influence on the course of hydroxylation. It could be that the organism has a predilection for attacking certain positions in the steroid nucleus (e.g., 1, 6, 12, and 15) and that the polar group acts in a negative way, directing the attack to more remote positions; hydroxylation might stop, or proceed less vigorously, when a sufficient number of hydroxy-groups (apparently two) has been introduced to give a product which is much more soluble in the medium. An alternative is that the polar group becomes associated with a hydrophilic region of the hydroxylating enzyme system and thereby determines the orientation in which the steroid is presented at complementary hydrophobic enzyme sites. Polar groups in rings A and D would then lead to specific arrangements of the substrate on the enzyme surface: involvement of the same sites (e.g. a triangular arrangement of one binding and two hydroxylating centres) could be the basis of the observed reversal in the directing effects of terminal ring carbonyl groups. Distinction between these alternatives cannot be made from results such as those reported here, and must await studies with isolated enzyme systems.

In practical terms ketones are better than alcohols as substrates, indicating that the carbonyl group is a more effective directing and/or binding site. The $1 \beta, 6 \alpha$-dihydroxylation observed with 3 -methylene- 5α -androstan- 17β-ol (Table 1) shows that the π-electrons have much less effect than the 17β-hydroxy-group. The failure of 5α-androstan- 3α-ol, with an axial hydroxygroup, to hydroxylate suggests that the orientation of the carbon-oxygen bond is also an important factor. Steroids with oxygenated C-3 side-chains were made to study the effect of a polar group further from the steroid nucleus. Generally these were converted inefficiently (Table 3) but the results with the 3α - and 3β-(β-acetoxyethoxy)-substituents may be significant.

Hydroxylation of mono-substituted steroids with Calonectria decora is of limited preparative value. Although it leads to hydroxy-steroids of unusual types (e.g. $1 \beta-$ and $15 \alpha-\mathrm{OH}$ groups), the invariable dihydroxylation means that selective reactions are necessary to remove the second hydroxy-group. The scope for utilising this organism in synthetic work is greatly improved by using dioxygenated steroids as substrates, as will be described later.

EXPERIMENTAL

Unless otherwise stated, spectra were measured using a Perkin-Elmer R14 (100 MHz) spectrometer with CDCl_{3} solutions (n.m.r.), a Perkin-Elmer 237 with CS_{2} or CCl_{4} (routine i.r.), and a Cary 14-M with EtOH (u.v.). An asterisk indicates that the n.m.r. signals, and possibly also the i.r. absorptions, have already been reported in the papers listed earlier. Optical rotations were determined on a Perkin-Elmer 141 polarimeter for CHCl_{3} solutions at $20^{\circ} \mathrm{C} . \mathrm{Al}_{2} \mathrm{O}_{3}$ refers to 'Camag' material, activity 1; deactivated $\mathrm{Al}_{2} \mathrm{O}_{3}$ was obtained by treatment with 5% of $\mathrm{H}_{2} \mathrm{O}$. Petrol refers to light petroleum, b.p. $60-80^{\circ}$. Details of the microbiological and preparative layer chromatography (p.l.c.) techniques, and an explanation of the abbreviations used in reporting the results, are

* Microbiological hydroxylation of a variety of macrocyclic alcohols and related compounds containing sulphur and nitrogen generally gives monohydroxylated products in which there is a roughly constant distance $(5 \cdot 5 \AA)$ between the carbon atom substituted and the hetero-atom group. ${ }^{6}$ Although there is some similarity between these results and ours, the dihydroxylation with C. decora and the lower conformational mobility of the steroids preclude precise comparison.
${ }^{13}$ P. C. Cherry, Sir Ewart R. H. Jones, and G. D. Meakins, Chem. Comm., 1966, 587.

Scheme
Additional work, structural elucidation, and points of interest

* Table 2. Reagents: (1), $\mathrm{H}_{2} \mathrm{CrO}_{4}-\mathrm{Me}_{2} \mathrm{CO}$; (2), NaBH_{4}.

No. 3, $J_{3.4 \alpha}=J_{3.4 \beta}(=2 \mathrm{~Hz})$; nos. 157, 194, and 277, $J_{3.4 \alpha} \neq J_{3,4 \beta}$: suggests that substituents are in ring B. No. 157, ΔM_{D} of $\mathrm{OH}=+35^{\circ}$: suggests $6 \alpha-\mathrm{OH}$ (lit., ${ }^{a}+55^{\circ}$) rather than $7 \beta-\mathrm{OH}$ (lit., ${ }^{a}+110^{\circ}$). No. $414, \Delta_{1}{ }^{3}+0 \cdot 16$ ($19-\mathrm{H}$) and $+0 \cdot 20(18-\mathrm{H})$: agrees with structure proposed (calc. +0.17 and $+0.20^{b}$) but not with that of corresponding 1,7 -dione (calc. +0.44 and +0.11). No. $194, ソ_{\max .} 1740 \mathrm{~cm}^{-1}$ and large negative Cotton effect: suggests 16 -oxo-group (lit., clarge positive effects of 15 -and 17 -oxo-groups).

12 β-hydroxyandrosta-3,5-dien-7-one (no. 170)

* Table 2. Reagents: (3), $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (4), $\mathrm{KOH}-\mathrm{MeOH}$.

No. 257, $\lambda_{\text {max. }}$. EtOH) 237 nm and ($\mathrm{KOH}-\mathrm{EtOH}$) 281 nm : suggestion of $3-\mathrm{OH}$ confirmed by conversion into no. 170 (the β-configuration then follows from n.m.r. ${ }^{b}$). No. $440, \mathrm{H}-4$ and H-6 signals at $\tau 5.28\left(\mathrm{t}, J 2.8 \mathrm{~Hz}\right.$) and $4.23\left(\mathrm{~s}, W_{\ddagger} 1 \cdot 5 \mathrm{~Hz}\right)$, respectively : suggests $4 \beta-\mathrm{OH}$ [the $\mathrm{H}-6$ signal of androst- 5 -en- 7 -one (no. 346) has $W_{\mathbf{t}} \mathbf{3 . 0} \mathrm{OHz}$ due to extra $4 \beta, 6$-coupling].
(iii) (The 5α-configuration is implied in the abbreviated names)

* Table 2. \dagger Table 1. Reagents as before, and: (5), Huang-Minlon reduction.

The results of the n.m.r. ${ }^{c}$ and i.r. ${ }^{d}$ investigations are reinforced by the mass spectral study of 1,6 -dioxoandrostanes, ${ }^{e}$ and the higher stability of the 5β-isomer (no. 356) in the $1,6,17$-trioxo-system. ${ }^{f}$

(no.356)
(iv) (The figures on the formulae are $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ frequencies, obtained under the conditions described earlier ${ }^{d}$)

$\underset{\text { D- Homo- } 5 \alpha \text {-androstan- }}{\text { 17a-one (no. 348) }} \longrightarrow \stackrel{*}{6 \alpha, 11 \alpha \text {-dihydroxy- }}$| 17a-one (no. 449) |
| :---: |

* Table 2. Reagents as before, and: (6), $\mathrm{HCl}-\mathrm{Me}_{2} \mathrm{CO}$.

isopropylidene derivative isopropylidene derivative (no. 464)

High resolution i.r. indicates a $12 \beta-\mathrm{OH}-17 \mathrm{a}-\mathrm{CO}$ system in no. 476 , and a $7 \beta-15 \alpha-(\mathrm{OH})_{2}$ system in nos. 476 and 467 : chemical evidence supports this in that both compounds have a pair of hydroxy-groups sufficiently close for acetal formation. (The bonding in nos. 476 and 467 could be $15 \rightarrow 7$ rather than the $7 \longrightarrow 15$ arrangement shown.)
(v)

5 α-Androstan-15-one (no. 18)

(no. 420)
0. 420)
(5)

* Table 1.
*abl. 1.
Cotton effects, positive for no. 439 and negative for no. 443: suggest 14α - and 14β-configurations respectively.g Huang-Minlon reduction of no. 443 involves partial epimerisation at position 14 and gives, in low yield, the $6 \alpha, 12 \beta$-diol (no. 222) previously encountered in work on the normal (14α) compounds.
c.d. $301 \operatorname{nm}(\Delta \varepsilon-2.70)$
$\nu_{\max } \quad 3626,1733 \mathrm{~cm}^{-1}$ m / e
(vi) 15-one (no. 413) \rightarrow -

(no.445)

$5 \alpha, 14 \beta$-androstane-
7,12-dione (no. 415)

$7 \beta, 12 \beta$-diacetoxy- $5 \alpha, 14 \beta-$ androstane (no. 433)
$+$
5α-androstane-7,12-dione (no. 50)

$7 \beta, 12 \beta$-diacetoxy- $5 \alpha-$
* Table 1. \dagger Synthesis in Experimental section. Reagents as before, and: (7), LiAlH_{4}; (8), TsOH- $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$.

Nos. 445 and 473 , one $>\mathrm{CH} \cdot \mathrm{OH}$ signal at unusually low field: suggests $7 \alpha-\mathrm{H}$ deshielded by l5-oxo-group in 14β-system. Similarity between no. 473 and authentic 14β-hydroxy-15-ketone (no. 426), especially in mass spectral base peaks arising from ready loss of ring o^{h} : suggests presence of $14 \beta-\mathrm{OH}$ in no. 473. Strong $\mathrm{OH} \cdots \mathrm{OH}$ bonding in no. 473 , and formation of an acetal: confirms $7 \beta, 14 \beta$-dihydroxy-system.
(vii)

* Table 1. Reagents as before, and: (9), O_{3}; (10), KOH-EtOH; (11), $\mathrm{H}_{2}-\mathrm{Pt}$.

Microbiological hydroxylation of no. 139 is efficient and clean; an appreciable quantity of the product (no. 453) is obtained readily. The sequences, one terminating in the known 3,6,17-triketone (no. 78), ${ }^{i}$ confirm the positions of the hydroxy-groups in the product; they also provide a series of androstane derivatives which are useful as reference compounds, and as starting materials for further work.
${ }^{a}$ L. F. and M. Fieser, 'Steroids,' Reinhold, New York, 1959, p. 179. b Ref. 8. e P. Crabbé, ' Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry,' Holden-Day, San Francisco, 1965, p. 39. ¿Ref. 9. e R. T. Aplin and P. C. Cherry, Chem. Comm., 1966, 628. f J. E. Bridgeman, P. C. Cherry, W. R. T. Cottrell, Sir Ewart R. H. Jones, P. W. LeQuesne, and G. D. Meakins, Chem. Comm., 1966, 561. g. Djerassi, G. von Mutzenbecher, J. Fajkos, D. H. Williams, and H. Budzikiewicz, J. Amer. Chem. Soc., 1965, 87, $817 .^{\text {n }}$ R. Tschesche, H. G. Berscheid, H. Fehlhaber, and G. Snatzke, Chem. Ber., 1967, 100, 3289. i Ref. 15.
given in ref. 14. The abbreviation s.m. is used for starting material. Two forms are used in stating yields: the weight of a homogeneous chromatographic fraction is given immediately after the compound number, whereas the weight of crystallised material is given after the m.p.
${ }^{14}$ J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136 .
and the solvent used. References are not given to well known steroids which are readily located in Elsevier's 'Encyclopaedia of Organic Chemistry', vol. 14 and supplements.
5α-Androst-2-en-1-one (no. 3).* (a) Incubation: 2.08 g in
${ }^{15}$ K. Tanabe, R. Takasaki, and R. Hayashi, Chem. and Pharm. Bull. (Japan), 1961, 9, 7.

Table 4

N.m.r. signals

Solutions were examined at 100 MHz . Arabic numerals subscript to τ refer to the solvent [1, $\left.\mathrm{CCl}_{4} ; 2, \mathrm{CDCl}_{3} ; 3, \mathrm{C}_{6} \mathrm{H}_{6}\right] . \quad \Delta_{1}{ }^{8}=\tau\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-\tau\left(\mathrm{CCl}_{4}\right) . \quad \tau_{2}($ calc. $)$ values were obtained, where possible from refs. 8 and 9 . Some signals are described as s (singlet) d (doublet), t (triplet), etc., or m (unresolved multiplet): the letters d, t, etc. are followed, in parentheses, by the coupling constants (J in Hz) ; m is followed by the half-height width (W in Hz). Where these terms are inappropriate the number of lines is indicated by an italicised number: this is followed, in parentheses, by a set of 'apparent J values '. a

$\begin{aligned} & \text { No. } \\ & (412) \end{aligned}$	Compound 5α,Androst-14-ene
(413)	$5 \alpha, 14 \beta$-Androstan-15-one
(414)	5β-Androst-2-ene-1,6-dione
(415)	$5 \alpha, 14 \beta$-Androstane-7,12-dione
(416)	Androst-5-ene-7,12-dione
(417)	5α-Androst-1-ene-3,12,15-trione
(418)	$5 \alpha, 14 \beta$-Androst-1-ene 3,12,15-trione
(419)	5α-Androstane-6,12,15-trione
(420)	$5 \alpha, 14 \beta$-Androstane-6,12,15-trione
(421)	$5 \alpha, 14 \beta$-Androstane- 7,12,15-trione
(422)	5α-Estrane-3,11,15-trione
(423)	A-Nor- 5α-androstane-2,12,15-trione

(424) Methyl 5α-androstan-
$3 \beta-\mathrm{yl}$ succinate
(425) Ethyl 5α-androstan
426) 3β-yloxyacetate
(426) 14-Hydroxy-5 $\alpha, 14 \beta$ -
(427) 12β-Hydroxyandrost
(428) \quad 12 2 -ene-Hydroxy-14 14β-androst-
429) 5α-Androstane-
430) $\begin{gathered}6 \alpha, 11 \alpha \text {-diol } \\ 5 \alpha \text {-Androstane }\end{gathered}$
431) $7{ }^{7 \beta, 12 \beta}$-diol
$7 \beta, 12 \beta$-Diacetoxy-
5α-androstane
(432) $5 \alpha, 14 \beta$-Androstane
(433) $7 \beta, 12 \beta$-diol
433) $7 \beta, 12 \beta$-Diacetoxy-
(434) $5 \alpha, 14 \beta$-Androstane-
$14,15 \alpha$-diol
435) $5 \alpha, 14 \beta$-Androstane-
436) $14 \alpha, 15 \alpha-$ Epoxy
5α-androstane
(437) 14,15 β-Epoxy-
438) $2 \alpha, 12 \beta$-Dihydroxan
5α-androstan-15-one
(439) $2 \alpha, 12 \beta$-Diacetoxy-
(440) $4 \beta, 12 \beta$-Dihydroxyandrost-
(441) $6 \alpha, 15 \alpha$-Dihydroxy-
(442) $6 \alpha, 15 \alpha$-Diacetoxy-
(443) $\quad \underset{\sim}{5}, 12 \beta$-androstan-12-0
(444) $6 \alpha, 17 \beta$-Dihydroxy-
445) $\rho \alpha$-androst-1-en-3
(445) $7 \beta, 12 \beta$-Dihydroxy-
(446) 12 5,14 -Dihydroxy-
$5 \alpha, 14 \beta$-androstan-
(447) $12 \beta, 15 \alpha$-Dihydroxy-
48) 5β-androstan-17-one
(448) $11 \alpha, 15 \alpha$-Dihydroxy
(449) $6 \alpha, 11 \alpha$-Dihydroxy-D-homo
(450) $12 \beta 15 \alpha$-Dihydroxy-A-not
5α-androstan-2-one
(451) $7 \alpha, 14$-Dihydroxy- $5 \alpha, 14 \beta$ -
452) 5α-Androstane-1 $\beta, 6 \alpha, 17 \beta$ triol (n.m.r. after acetylation)
(453) 3-Methylene-5 α -
(454) $1 \beta, 6 \alpha, 17 \beta$-Triacetoxy-3-methylene- 5α-androstane
(455) $\begin{aligned} & \text { 6 } \alpha, 17 \beta \text {-Diacetoxy-3- } \\ & \text { methylene- } 5 \alpha \text {-androstan- }\end{aligned}$ 1β-ol

8.99
$9 \cdot 19$
$9 \cdot 14$
$8 \cdot 64$
$8 \cdot 98$
$9 \cdot 26$
$8 \cdot 96$
8.83

$8 \cdot 63$
8.99

9.26
$8 \cdot 63$

9.28
$9 \cdot 0$
8.
$\begin{array}{cc}\tau_{2} & \tau_{2} \\ 9 \cdot 17 & \end{array}$

No. Compound
$\left.\begin{array}{cc}\text { (456) } 7 \beta, 15 \alpha-\text { Isopropylidene- } \\ \text { dioxy-D-homo-5 } \alpha- \\ \text { androstan-1 } 1 \beta-0\end{array}\right\}$
(458) $\begin{array}{r}6 \alpha, 15 \alpha \text {-Diacetoxy- } 3 \beta- \\ \text { (2-acetoxyethoxy)-5 }\end{array}$ (2-acetoxyethoxy) $-5 \alpha-$
(459) 3α-(2-Hydroxyethoxy)5α-androstane-12 $\beta, 15 \alpha$ diol
(460) $\quad 12 \beta, 15 \alpha$-Diacetoxy- $3 \alpha-$
(2-acetoxyethoxy)- $5 \alpha-$ (2-acetoxyethoxy)-5 α androstane
(461) 5α-Androstane-
(462) $\begin{gathered}3 \beta, 12 \beta, 15 \alpha-\text {-trio } \\ 5 \alpha-\text { Androstane- } \\ 6 \alpha, 11 \alpha, 17 \beta \text {-trio }\end{gathered}$ $6 \alpha, 11 \alpha, 17 \beta$-triol
(n.m.r. after acetylation)
(463) 5α-Androstane-
$6 \alpha, 12 \beta, 15 \alpha$-triol
(464) $7 \beta, 15 \alpha-$ Isopropylidene-dioxy-D-homo- 5α -androstan-12 β-ol
(465) $\begin{aligned} & 1 \beta, 6 \alpha, 15 \alpha-\text { Trihydroxy- } \\ & \\ & 5 \alpha-\text { androstan-12-one }\end{aligned}$
(466) $\begin{gathered}1 \beta, 6 \alpha, 15 \alpha \text {-Triacetoxy- } \\ 5 \alpha \text {-androstan-12-one }\end{gathered}$
(467) $1 \beta, 7 \beta, 15 \alpha$-Trihydroxy-
(468) 3β one
dihydroxy- 5α-androstan- $\quad 1$
(469) $6 \alpha, 12 \beta-15 \alpha$, Trihydroxy$5 \alpha$-androstan-3-one ($\mathrm{CH}-\mathrm{OH}$ signals in
(470) $6 \alpha, 12 \beta$-Diacetoxy-15 $\alpha-$ hydroxy- 5α-androstan- 3
one
(471) $12 \beta, 15 \alpha$-Diacetoxy- 6α -hydroxy- 5α-androstan-3-one
(472) $6 \alpha, 12 \beta, 15 \alpha$-Triacetoxy- 5α -androstan-3-one
(473) $7 \beta, 12 \beta, 14$-Trihydroxy$5 \alpha, 14 \beta$-androstan- 15 -one
(474) 7 $7,12 \beta$-Diacetoxy-14-hydroxy- $5 \alpha, 14 \beta$ -
475) $\begin{array}{r}\text { androstan-15-one } \\ 12 \beta \text {-Hydroxy-7 } \beta, 14-\end{array}$ isopropylidenedioxy$5 \alpha, 14 \beta$-androstan-15-one (476) $\begin{array}{r}7 \beta, 12 \beta, 15 \alpha \text {-Trihydroxy-p- } \\ \text { homo- } 5 \alpha \text {-androstan-17a }\end{array}$ one
(477) Ethyl 6 $\alpha, 12 \beta, 15 \alpha-$ tri-hydroxy- 5α-andr
3β-yloxyacetate
(478) Ethyl $6 \alpha, 12 \beta, 15 \alpha$-tri-
acetoxy-5 α-androstan-

a 3β-yloxyacetate
(479)
$3 \beta-A l l y l o x y-5 \alpha-a n d r o s t a n e-~$
$7 \beta, 12 \beta, 15 \alpha-t r i o l$
(480) 3β-Allyloxy- $7 \beta, 12 \beta, 15 \alpha$ -
triacetoxy- $-\alpha$-androstane
(481) 3β-Propyloxy-5 α -androstane- $7 \beta, 12 \beta, 15 \alpha$ $\alpha, 14 \beta$-Androstane$7 \beta, 12 \beta, 14,15 \alpha$-tetraol

Table 4 (Continued)

a M. G. Combe, W. A. Denny, G. D. Meakins, Y. Morisawa, and E. E. Richards, J. Chem. Soc. (C), 1971, 2300 .
$\mathrm{Me}_{2} \mathrm{SO}(312 \mathrm{ml})$, 52 flasks, $\mathrm{A}, 6 \mathrm{~d}$, extraction $\mathrm{I} \longrightarrow 3.2 \mathrm{~g}$ combined extract. Chromat. $\mathrm{SiO}_{2}(100 \mathrm{~g}) . \mathrm{C}_{6} \mathrm{H}_{6}$ gave s.m. (540 mg). $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}$ (7:3) gave $6 \alpha-$ hydroxy$5 \alpha-$ androst-2-en-1-one (no. 157),* m.p. 194-195 (from $\mathrm{Me}_{2} \mathrm{CO}$) $(23 \mathrm{mg}),[\alpha]_{\mathrm{D}}+142^{\circ}\left(\begin{array}{cc}c & 0 \cdot 4)\end{array}\right.$ (Found: C, $79 \cdot 0$; $\mathrm{H}, 9 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 9 \cdot 8 \%$), $v_{\text {max }} 3610$ and $1680 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 225 \mathrm{~nm}\left(\varepsilon 8650\right.$). $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}$ (3:2) gave 6α-hydroxy-5 α-androst- 2 -ene-1,16-dione (no. 194),* m.p. $222-225^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) (254 mg),
$[\alpha]_{\mathrm{D}}-19^{\circ}(c \quad 0.9)$ (Found: C, 75.3; H, 8.5. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.6 \%), \nu_{\text {max }} 3595,1735$, and $1670 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 225 \mathrm{~nm}(\varepsilon 7000)$, c.d. $304 \mathrm{~nm}(\Delta \varepsilon-2 \cdot 1) . \quad \mathrm{C}_{6} \mathrm{H}_{6}-$ EtOAc (3:7) gave $6 \alpha, 16 \beta$-dihydroxy- 5α-androst-2-en-1-one (no. 277),* m.p. $215-217^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$) (60 mg) (Found: $\mathrm{C}, 74 \cdot 7 ; \mathrm{H}, 9 \cdot 3 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 93 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3626$ and $1681 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of 6α-hydroxy- 5α-an-drost-2-en-l-one (no. 157) (55 mg) in $\mathrm{Me}_{2} \mathrm{CO}$ with 8 N $\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5β-androst-2-ene-1,6-dione (no. 414) (50 mg), m.p. $144-145^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+64^{\circ}(c \quad 0.6)$ (Found: $\mathrm{C}, 80.0 ; \mathrm{H}, 9.2 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.7 ; \mathrm{H}, 9.15 \%$), $v_{\text {max. }} 1715$ and $1680 \mathrm{~cm}^{-1}$. Oxidation of 6α-hydroxy5α-androst-2-ene-1,16-dione (no. 194) (50 mg) gave 5β-an-drost-2-ene-1,6,16-trione (no. 62) * (40 mg), m.p. $237-242^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-88^{\circ}$ (c 0.6) (Found: C, 76.0; $\mathrm{H}, 8.2 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 8.0 \%$), $\nu_{\text {max. }} 1740$, 1712 , and $1678 \mathrm{~cm}^{-1}$. A solution of $\mathrm{NaBH}_{4}(35 \mathrm{mg})$ and 6α-hydroxy- 5α-androst-2-ene-1,16-dione (no. 194) (70 mg) in $\mathrm{EtOH}(5 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was stirred for 1 h at $0^{\circ} \mathrm{C}$. Addition of AcOH followed by extraction with CHCl_{3} gave a solid (67 mg) which was purified by p.l.c. [2 small plates, $\left.1 \times \mathrm{Et}_{2} \mathrm{O}\right]$. The first band (higher R_{F}) gave s.m. (12 mg) ; the second gave $6 \alpha, 16 \beta$-dihydroxy- 5α-androst-2-en-1-one (no. 277) (29 mg), m.p. and mixed m.p. 215$217^{\circ}$.
$5 \alpha-$ Androstan-2-one (no. 4).* (a) Incubation: 1.2 g in $\mathrm{Me}_{2} \mathrm{SO}(180 \mathrm{ml}), 30$ flasks, $\mathrm{B}, 4$ d, extraction II $\longrightarrow 1.81 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 150 g). Petrol-Et ${ }_{2} \mathrm{O}$ (9:1) gave s.m. (159 mg). $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ ($19: 1$) gave an oil (643 mg) which on p.l.c. [2 large plates, $6 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(7: 3)\right]$ gave two bands. That of higher R_{F} afforded $6 \alpha, 11 \alpha$-dihydroxy-5 α-androstan-2-one (no. 270) * (130 mg), m.p. $117-119^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+20^{\circ}(c 2 \cdot 0)$ (Found: C, 74.1; H, $9.9 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3600$ and $1703 \mathrm{~cm}^{-1}$. The second band gave $6 \alpha, 12 \beta$-dihydroxy-5 α-androstan-2-one (no. 273) * (270 mg), m.p. $208-210^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+60^{\circ}(c 0.9)$ (Found: $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 10 \cdot 0 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\max } 3605$ and $1703 \mathrm{~cm}^{-1}$.
(b) Transformations: Huang-Minlon reduction of $6 \alpha, 11 \alpha-$ dihydroxy- 5α-androstan-2-one (no. 270) (87 mg) gave 5α-androstane- $6 \alpha, 11 \alpha$-diol (no. 429) (70 mg), m.p. $159-$ 160° (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-5^{\circ}$ (c 0.9) (Found: C, $77.8 ; \mathrm{H}, 10 \cdot 8 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 11.0 \%$), $\nu_{\text {max. }} 3605 \mathrm{~cm}^{-1}$. Oxidation of the diol (no. 429) (50 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-6,11-dione (no. 46) * $\left(40 \mathrm{mg}\right.$), m.p. $173-174^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+52^{\circ}$ (c 0.9) (Found: C, 78.9; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 1$; $\mathrm{H}, 9 \cdot 8 \%$). Huang-Minlon reduction of $6 \alpha, 12 \beta$-dihydroxy5α-androstan-2-one (no. 273) (60 mg) gave 5α-androstane$6 \alpha, 12 \beta$-diol (no. 222) * (40 mg), m.p. 197.5-198.5 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+23^{\circ}(c 1 \cdot 0$) (Found: C, $78 \cdot 1 ; \mathrm{H}$, $11 \cdot 0 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 0 ; \mathrm{H}, 11 \cdot 0 \%$), $\nu_{\text {max. }} 3609$ cm^{-1}. Oxidation of the diol (no. 273) (30 mg) gave 5α-an-drostane-6,12-dione (no. 47) * (25 mg), m.p. 181-183 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+41^{\circ}(c \quad 0.4)$ (Found: C, 78.8; $\mathrm{H}, \mathbf{9 . 6} . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 9 \cdot 8 \%$).

A-Nor-5 α-androstan-2-one (no. 345).* (a) Incubation: 1.0 g in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium B, 4 d , extraction $\mathrm{I} \longrightarrow 1.4 \mathrm{~g}$ total extract. P.l.c. [3 large plates, $6 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}(4: 1)$] gave 2 bands. Band 1 (higher R_{F}) afforded s.m. (400 mg). Band 2 gave $12 \beta, 15 \alpha$-di-hydroxy-A-nor-5 α-androstan-2-one (no. 450) (80 mg) as an oil, $\nu_{\text {max. }} 3610,3450$, and $1739 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of the diol (no. 450) gave A-nor-5 α-androstane-2,12,15-trione (no. 423), m.p. $171-173^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+207^{\circ}(c 0.6)$ (Found: C, $74.9 ; \mathrm{H}, 8.4 . \quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max }} 1744$ and $1716 \mathrm{~cm}^{-1}$.
$5 \alpha-$ Androstan-3-one (no. 5).* (a) Incubation: 3 g in EtOH (300 ml), 60 flasks, medium A, 5 d , extraction $\mathrm{III} \longrightarrow 3.0 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 180 g). $\mathrm{C}_{6} \mathrm{H}_{6}$ gave s.m. (671 mg), m.p. and mixed m.p. $102-103^{\circ}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(5: 1)$ gave $12 \beta, 15 \alpha$-dihydroxy5α-androstan-3-one (no. 299),* m.p. 173-174 (from EtOAc) (1.35 g), $[\alpha]_{\mathrm{D}}+61^{\circ}(c 0.4)$ (Found: C, 74.7 ; H, 9.8. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, \mathbf{9 . 9 \%}$). Further elution with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(5: 1)$ gave 5α-androstane- $3 \beta, 12 \beta, 15 \alpha-$ triol (no. 461), m.p. $247-248^{\circ}$ (from MeOH) ($220 \mathrm{mg}, 6.5 \%$), $[\alpha]_{\mathrm{D}}+46^{\circ}(c \quad 0.4)$ (Found: C, 73.9; H, 10.5. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 10.5 \%$), $\nu_{\text {max }}$ (Nujol) $3290 \mathrm{~cm}^{-1}$.
(b) Transformations: Huang-Minlon reduction of $12 \beta, 15 \alpha$-dihydroxy- 5α-androstan-3-one (no. 299) (870 mg) gave 5α-androstane-12, 15α-diol (no. 229) * (820 mg), m.p. $139-140^{\circ}$ and $170-171^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+40^{\circ}(c 0.9)$ (Found: C, $77.8 ; \mathrm{H}, 10.9 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 11.0 \%$). Oxidation of the diol (no. 229) (90 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-12,15-dione (no. 55) * (70 mg), m.p. 192-193 (from EtOH), $[\alpha]_{D}$ $+113^{\circ}(c 0.3)$ (Found: C, $79.0 ; \mathrm{H}, 9.9 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C, $79 \cdot 1 ; \mathrm{H}, 9.8 \%$). The above dione (no. 55) (100 mg) was heated under reflux in $5 \% \mathrm{KOH}-\mathrm{MeOH}(20 \mathrm{ml})$ for 2 h to give $5 \alpha, 14 \beta$-androstane-12,15-dione (no. 56),* m.p. $127-128^{\circ}$ (from EtOH) (80 mg), $[\alpha]_{\mathrm{D}}+12^{\circ}(c 0.8)$ (Found: $\mathrm{C}, 79 \cdot 4 ; \mathrm{H}, 9 \cdot 7 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 9 \cdot 8 \%$).

Oxidation of $12 \beta, 15 \alpha$-dihydroxy- 5α-androstan- 3 -one (no. 299) (20 mg) gave 5α-androstane-3,12,15-trione (no. 86) * (15 mg), m.p. 203-205 (from EtOH), $[\alpha]_{\mathrm{D}}+118^{\circ}(c 1 \cdot 0)$ (Found: C, $75 \cdot 4 ; \mathrm{H}, 8.7 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$). The above trione (no. 86) (100 mg) was heated under reflux in $5 \% \mathrm{KOH}-\mathrm{MeOH}(20 \mathrm{ml})$ for 2 h to give $5 \alpha, 14 \beta$-androst-ane-3,12,15-trione (no. 87),* m.p. 241-243 ${ }^{\circ}$ (from EtOH) (85 mg), $[\alpha]_{\mathrm{D}}+30^{\circ}(c 1 \cdot 0)$ (Found: C, $75 \cdot 3 ; \mathrm{H}, 8.6$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\text {max. }} 1748,1726$, and $1716 \mathrm{~cm}^{-1}$.

Acetylation of 5α-androstane- $3 \beta, 12 \beta, 15 \alpha$-triol (no. 461) with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(10: 1)$ gave $3 \beta, 12 \beta, 15 \alpha$-triacetoxy$5 \alpha-a n d r o s t a n e ~(n o . ~ 328), * ~ m . p . ~ 141-142^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+14^{\circ}(c \quad 0.8)$ (Found: C, $69.1 ; \mathrm{H}, 8.5 . \quad \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 8.8 \%)$, $\nu_{\text {max. }} 1745 \mathrm{~cm}^{-1}$.

A solution of $12 \beta, 15 \alpha$-dihydroxy- 5α-androstan- 3 -one (no. 299) (100 mg) and $\mathrm{NaBH}_{4}(80 \mathrm{mg})$ in EtOH (16 ml)$\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$ was stirred for 30 min at $20^{\circ} \mathrm{C}$. After the addition of AcOH , the solvents were removed and the crude product was acetylated with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(10: 1)$ for 5 d at $20^{\circ} \mathrm{C}$ to give $3 \beta, 12 \beta, 15 \alpha$-triacetoxy- 5α-androstane (no. 328) (90 mg), m.p. (from EtOH) and mixed m.p. 141$142^{\circ}$.
5α-Androstan-3-one (no. 5). (a) Incubation: 1.0 g in $\mathrm{Me}_{2} \mathrm{SO}(100 \mathrm{ml}$), 30 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 600 \mathrm{mg}$ mycelial extract and 500 mg broth extract. The mycelial extract contained no steroid and was discarded. Crystallisation of the broth extract from EtOAc and filtration of the residues through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 10 g$)$ in EtOAc gave $6 \alpha, 12 \beta, 15 \alpha-$ trihydroxy- 5α-androstan-3-one (no. 469) (390 mg), m.p. 231-233 ${ }^{\circ}$ (from EtOAc), $[\alpha]_{\mathrm{D}}$ $+60^{\circ}(c 0.2)$ (Found: C, 69.55; H, 9.0. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}, 0.5 \mathrm{Et}$ OAc requires C, $69 \cdot 2 ; \mathrm{H}, 8.9 \%$), $\nu_{\text {max. }} 3600$ and $1715 \mathrm{~cm}^{-1}$.
(b) Transformations: Huang-Minlon reduction of the
trihydroxy-ketone (no. 469) (200 mg) gave 5α-androstane$6 \alpha, 12 \beta, 15 \alpha$-triol (no. 463) (90 mg), m.p. 235-236 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+67^{\circ}(c \quad 0.8$) (Found: C, $74 \cdot 0$; H , $10 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 10.5 \%$), $v_{\text {max. }} 3580 \mathrm{~cm}^{-1}$.

Acetylation of the trihydroxy-ketone (no. 469) (200 mg) with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ for 3 h at $20^{\circ} \mathrm{C}$ gave a mixture of 3 compounds. P.l.c. [$\mathrm{Me}_{2} \mathrm{CO}$-hexane ($1: 4$)] gave, in order of increasing polarity, $6 \alpha, 12 \beta, 15 \alpha$-triacetoxy- 5α-androstan3 -one (no. 472) (50 mg), m.p. 182- 184° (from $\mathrm{Et}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+97^{\circ}(c \quad 0.4)$ (Found: C, 66.9; H, 8.1. $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.9 ; \mathrm{H}, 8.1 \%$), $\nu_{\text {max }} 1735$ and $1720 \mathrm{~cm}^{-1}$; $6 \alpha, 12 \beta$-diaceto $x y$ - 15α-hydroxy- 5α-androstan-3-one (no. 470) (30 mg), m.p. 206- 210° (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+74^{\circ}$ (c 0.6) (Found: $\mathrm{C}, 67.75 ; \mathrm{H}, 8.3 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires C , $67.95 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max }} 3600$ and $1730 \mathrm{~cm}^{-1}$; and $12 \beta, 15 \alpha-$ diacetoxy-6 α-hydroxy-5 α-androstan-3-one (no. 471) (100 mg), m.p. 220-225 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+76^{\circ}$ (ccc.7) (Found: C, 68.2; H, 8.35. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.95$; $\mathrm{H}, 8.4 \%), \nu_{\text {max }} 3600$ and $1730 \mathrm{~cm}^{-1}$.
5α-Estran-3-one (no. 26).* (a) Incubation: 1.6 g in $\mathrm{Me}_{2} \mathrm{SO}(240 \mathrm{ml}$), 40 flasks, medium B, 6 d , extraction $\mathrm{I} \longrightarrow 2.5 \mathrm{~g}$ total extract. P.l.c. [5 large plates, $15 \times$ petrol- $\mathrm{Me}_{2} \mathrm{CO}(5: 1)$] gave 3 bands. Band 1 (highest R_{F}) gave s.m. (294 mg). Band 2 gave $11 \alpha, 15 \alpha$-dihydroxy5α-estran-3-one (no. 448), m.p. 192-194 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) (60 mg), $[\alpha]_{\mathrm{D}}+36^{\circ}$ (c $1 \cdot 0$) (Found: C, $74 \cdot 0$; H, 9.5. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 9.7 \%$), $\nu_{\text {max. }} 3590$ and $1708 \mathrm{~cm}^{-1}$. Band $3(812 \mathrm{mg})$, after further p.l.c. [2 large plates, $20 \times$ petrol- $\mathrm{Me}_{2} \mathrm{CO}(4: 1)$], gave $12 \beta, 15 \alpha$-dihydroxy5α-estran-3-one (no. 312),* m.p. 185.5-187 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) (191 mg), $[\alpha]_{\mathrm{D}}+83^{\circ}(c \mathrm{l} \cdot 0)$ (Found: C, $74 \cdot 1$; H, 9.5 . $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 9.7 \%$), $\nu_{\text {max. }} 3590$ and $1708 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of $11 \alpha, 15 \alpha$-dihydroxy5α-estran-3-one (no. 448) (25 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-estrane-3,11,15-trione (no. 422) (21 mg), m.p. 192$194^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}+36^{\circ}(c 0.4)$ (Found: C, $75 \cdot 0$; $\mathrm{H}, 8.5 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max. }}$ 1746, 1725 , and $1717 \mathrm{~cm}^{-1}$.
5α-Androst-1-en-3-one (no. 6).* (a) Incubation: 3.0 g in $\mathrm{Me}_{2} \mathrm{SO}(900 \mathrm{ml}), 60$ flasks, medium A, 6 d , extraction III $\longrightarrow 5 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 200 g). Petrol- $\mathrm{C}_{6} \mathrm{H}_{6}$ (2:3) gave s.m. (405 mg), m.p. and mixed m.p. 101-103 ${ }^{\circ}$. $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Et}_{2} \mathrm{O}$ (2:3) gave an oil $(1.87 \mathrm{~g})$ which was rechromatographed on $\mathrm{SiO}_{2}(100 \mathrm{~g})$. $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}(2: 3)$ gave $6 \alpha, 11 \alpha$-dihydroxy- 5α-androst-1-en-3-one (no. 271) * (63 mg) as an oil, $\nu_{\max } 3600$ and $1680 \mathrm{~cm}^{-1}$. Further elution of the SiO_{2} column with the same solvent mixture gave $12 \beta, 15 \alpha$-dihydroxy- 5α-androst-l-en-3-one (no. 300),* m.p. 193-196 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) (608 mg), $[\alpha]_{\mathrm{D}}+76^{\circ}(c 0.8)$ (Found: C, $74.9 ; \mathrm{H}$, 9.2. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%\right)$, $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3600 and $1673 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 230 \mathrm{~nm}(\varepsilon 8900)$.
(b) Transformations: Hydrogenation of $12 \beta, 15 \alpha$-dihydr-oxy-5 α-androst-1-en-3-one (no. 300) (90 mg) in EtOH over $10 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg})$ gave $12 \beta, 15 \alpha$-dihydroxy- 5α-andro-stan-3-one (no. 299) (60 mg), m.p. and mixed m.p. 172$174^{\circ}$.

Oxidation of $12 \beta, 15 \alpha$-dihydroxy- 5α-androst-1-en- 3 -one (no. 300) (50 mg) gave 5α-androst-1-ene-3,12,15-trione (no. 417) (41 mg), m.p. $178-182^{\circ}$ ($\mathrm{Me}_{2} \mathrm{CO}-$ hexane) ; $\nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 1740,1710$, and $1675 \mathrm{~cm}^{-1}$. A solution of this trione (55 mg) in $5 \% \mathrm{KOH}-\mathrm{EtOH}$ was heated under reflux for 2 h to give, after p.l.c. (1 small plate, $1 \times$ petrol-EtOAc ($9: 1$)], $5 \alpha, 14 \beta$-androst-1-ene-3,12,15-trione (no. 418) (42
mg), m.p. $244-246^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$) (Found: C, 75.8; H, $\mathbf{7 . 9}$. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 76.0 ; \mathrm{H}, 8.05 \%\right)$, $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1740$, 1720 , and $1680 \mathrm{~cm}^{-1}$.

Oxidation of $6 \alpha, 11 \alpha$-dihydroxy- 5α-androst-1-en-3-one (no. 271) (22 mg) gave 5α-androst-1-ene-3,6,11-trione (no. 73),* m.p. $172-175^{\circ}$ (from CHCl_{3}-hexane) (10 mg), $[\alpha]_{\mathrm{D}}+48^{\circ}$ (c 0.9) (Found: $\mathrm{C}, 76.0 ; \mathrm{H}, 8.4 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C , $76.0 ; \mathrm{H}, 8.05 \%), v_{\max .}\left(\mathrm{CHCl}_{3}\right) 1725,1715$, and $1690 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 220 \mathrm{~nm}(\varepsilon 7780)$.

Androst-4-en-3-one (no. 7).* (a) Incubation: $2 \cdot 2 \mathrm{~g}$ in EtOH (220 ml), 44 flasks, medium A, 2 d , extraction III $\longrightarrow 3.0 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 180 g). Petrol- $\mathrm{C}_{6} \mathrm{H}_{6}$ (5:1) gave s.m. (680 mg), m.p. and mixed m.p. $105-107^{\circ} . \quad \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(10: 1)$ gave $12 \beta, 15 \alpha-$ dihydroxyandrost-4-en-3-one (no. 302),* m.p. 204-205 (from $\mathrm{Me}_{2} \mathrm{CO}$) (950 mg), $[\alpha]_{\mathrm{D}}+149^{\circ}$ (c 0.9) (Found: C, $75 \cdot 2 ; \mathrm{H}, 9.4 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%\right)$, $\nu_{\text {max. }}$ 3624 and $1679 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 241 \mathrm{~nm}(\varepsilon 15,500)$.
(b) Transformations: Oxidation of $12 \beta, 15 \alpha$-dihydroxy-androst-4-en-3-one (no. 302) (200 mg) gave androst-4-ene-3,12,15-trione (no. 88),* m.p. 186-187 ${ }^{\circ}$ (from EtOH) (120 mg), $[\alpha]_{\mathrm{D}}+167^{\circ}(c 0.7$) (Found: C, $75.9 ; \mathrm{H}, 8.0$. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 8.05 \%$), $\nu_{\text {max }} 1752,1722$, and $1682 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 238 \mathrm{~nm}(\varepsilon 16,100)$. A solution of this trione in $5 \% \mathrm{KOH}-\mathrm{EtOH}$ was heated under reflux for 2 h to give 15β-androst-4-ene-3,12,15-trione (no. 89),* m.p. 242-244 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+116^{\circ}(c 1 \cdot 0)$ (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 8.3$. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 8.05 \%$), $\nu_{\text {max }} 1747,1716$, and $1682 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 238 \mathrm{~nm}(\varepsilon 16,300)$.

Estr-4-en-3-one (no. 27).* (a) Incubation: 3.0 g in $\mathrm{Me}_{2} \mathrm{SO}$ (1110 ml), 75 flasks, medium A, 6 d , extraction $\mathrm{I} \longrightarrow 3 \mathrm{~g}$ total extract. P.l.c. [6 large plates, $24 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(5: 1)\right]$ gave 3 bands. Band 1 (highest R_{F}) gave s.m. (80 mg). Band 2 gave $12 \beta, 15 \alpha$-dihydroxyestr-4-en-3-one (no. 313),* m.p. 202-202.5 (from $\mathrm{Me}_{2} \mathrm{CO}$ hexane), ($1 \cdot 2 \mathrm{~g}$), $[\alpha]_{\mathrm{D}}+97^{\circ}(c 1 \cdot 0)$ (Found: C, $74 \cdot 2 ; \mathrm{H}, 9 \cdot 1$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 4 ; \mathrm{H}, 9.0 \%$), $\nu_{\text {max. }} 3600$ and 1675 $\mathrm{cm}^{-1}, \lambda_{\text {max }} 240 \mathrm{~nm}(\varepsilon 17,600)$. Band 3 gave $6 \beta, 11 \alpha$-dihyd $\gamma-$ oxyestr-4-en-3-one (no. 311),* m.p. 161-162 (from Me_{2} -CO-hexane) (400 mg), $[a]_{\mathrm{D}}-188^{\circ}(c 1 \cdot 0)$ (Found: C, $74 \cdot 3$; $\mathrm{H}, 8.9 . \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 4 ; \mathrm{H}, 9.0 \%$), $\nu_{\text {max. }} 3592$ and $1675 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 236 \mathrm{~nm}(\varepsilon 13,300)$.
(b) Transformations: Oxidation of $12 \beta, 15 \alpha$-dihydr-oxyestr-4-en-3-one (no. 313) (200 mg) gave estr-4-ene-3,12,15-trione (no. 100),* m.p. 153.5-154.5 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) (124 mg), $[\alpha]_{\mathrm{D}}+126^{\circ}(c \quad 0.8)$ (Found: C, 75.2; $\mathrm{H}, 7.8 . \quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 7.7 \%$), $\nu_{\text {max. }} 1742$, 1712 , and $1675 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 238 \mathrm{~nm}(\varepsilon 7650)$.
5α-Androstan- 3β-ol (no. 112).* Incubation: 200 mg in $\mathrm{EtOH}(10 \mathrm{ml}), 5$ flasks, medium B, 6 d, extraction III \longrightarrow 233 mg total extract. P.l.c. (1 large plate, $6 \times \mathrm{Et}_{2} \mathrm{O}$] gave two bands. Band 1 (higher R_{F}) afforded s.m. (65 mg). Band 2 gave 5α-androstane- $3 \beta, 12 \beta, 15 \alpha$-triol (no. 461) (28 mg), m.p. (from MeOH) and mixed m.p. 246-248 ${ }^{\circ}$.
$5 \alpha-A n d r o s t-1-e n-3 \beta-o l$ (no. 113).* Incubation: 800 mg in $\mathrm{Me}_{2} \mathrm{SO}(120 \mathrm{ml}), 20$ flasks, medium B, 6 d , extraction $\mathrm{III} \longrightarrow 0.76 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(100 \mathrm{~g})$. Petrol-EtOAc ($7: 3$) gave s.m. (183 mg). Further elution with the same solvent mixture gave $12 \beta, 15 \alpha$-dihydroxy5α-androst-1-en-3-one (no. 300), m.p. and mixed m.p. $192-195^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) (100 mg).

Androst-4-en-3ß-ol (no. 114).* (a) Incubation: $1 \cdot 0 \mathrm{~g}$ in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium B, 6 d , extraction $\mathrm{I} \longrightarrow 287 \mathrm{mg}$ mycelial extract and 1.0 g broth extract. P.l.c. of the mycelial extract [1 large plate, $1 \times \mathrm{Et}_{2} \mathrm{O}$]
gave androst-4-en-3-one (no. 7) (125 mg), m.p. and mixed m.p. 102-105 ${ }^{\circ}$. P.l.c. of the broth extract [2 large plates, $1 \times E t O A c-E t_{2} \mathrm{O}$ (9:1)] gave three bands. That of highest R_{F} yielded 12β-hydroxy- 14β-androst-4-ene- 3,15 dione (no. 428) as an oil (30 mg), $\nu_{\text {max }} 3620,1738$, and 1675 cm^{-1}. The second band gave 12β-hydroxyandrost- 4 -ene3,15 -dione (no. 427) as an oil (35 mg), $\nu_{\text {max }} 3620,1738$, and $1676 \mathrm{~cm}^{-1}$. The third band gave $12 \beta, 15 \alpha$-dihydroxy-androst-4-en-3-one (no. 302) (425 mg), m.p. and mixed m.p. $202-204^{\circ}$.
(b) Transformations: Oxidation of 12β-hydroxy-14 $\beta-$ androst-4-ene-3,15-dione (no. 428) and of its 14α-epimer (no. 427) gave 14β-androst-4-ene-3,12,15-trione (no. 87), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed m.p. 242- 244°.
3β-Allyloxy-5 α-androstane (no. 408). (a) Incubation: 4 g in $\mathrm{Me}_{2} \mathrm{SO}(1200 \mathrm{ml}), 80$ flasks, medium A, 6 d , extraction $\mathrm{III} \rightarrow 4.6 \mathrm{~g}$ total extract. Chromat. $\mathrm{SiO}_{2}(3 \%$ deactivated; 150 g). Petrol-EtOAc ($19: 1$) gave s.m. (1.53 g). EtOAc gave an oil (1.2 g) which was rechromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 120 g). Elution of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ column with $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}(2: 3)$ gave 3β-allyloxy- $5 \alpha-$ androstane-7 $\beta, 12 \beta, 15 \alpha$-triol (no. 479), m.p. 159-162 (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol) (0.48 g) (Found: C, $72 \cdot 3 ; \mathrm{H}, 9.7$. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $\left.72.5 ; \mathrm{H}, 9.9 \%\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3585$ and $3350 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of the triol (no. 479) (50 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ at $20^{\circ} \mathrm{C}$ gave 3β-allyloxy- $7 \beta, 15 \alpha-$ dihydroxy- 5α-androstan-12-one (no. 468) (10 mg), m.p. $144-146^{\circ}$ (from CHCl_{3}-petrol), $m / e 362\left(M^{+}\right), \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3580,3350 , and $1700 \mathrm{~cm}^{-1}$. Acetylation of the triol (no. 479) gave $7 \beta, 12 \beta, 15 \alpha$-triacetoxy- 3β-allyloxy- 5α-androstane (no. 480) as an oil, $\nu_{\max }\left(\mathrm{CS}_{2}\right) 1735 \mathrm{~cm}^{-1}$. The triol (no. 479) (100 mg) in EtOH (15 ml) was hydrogenated over $5 \% \mathrm{Pd}-\mathrm{C}(15 \mathrm{mg})$ for 4 h to give 3β-propyloxy- 5α-andro-stane- $7 \beta, 12 \beta, 15 \alpha$-triol (no. 481) (100 mg), m.p. $174-176^{\circ}$ (from CHCl_{3}), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3590 \mathrm{~cm}^{-1}$.

Methyl $5 \alpha-$ Androstan- $3 \beta-y l$ Succinate (no. 424). Incubation: 1.3 g in $\mathrm{Me}_{2} \mathrm{SO}(315 \mathrm{ml}), 26$ flasks, medium A, 4 d , extraction III $\longrightarrow 1.4 \mathrm{~g}$ total extract. Chromat. SiO_{2} (5% deactivated; 100 g). Petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($1: 1$) gave s.m. $(536 \mathrm{mg})$. $\quad \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(9: 1$ and $3: 2$) gave a gum (188 $\mathrm{mg})$. P.l.c. of this $\left[1\right.$ large plate, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (3:2)] gave 5α-androstane- $3 \beta, 12 \beta, 15 \alpha$-triol (no. 461) (15 mg), m.p. $244-245^{\circ}$ (from CHCl_{3}-petrol) and mixed m.p. 247-248 ${ }^{\circ}$.

Ethyl 5α-Androstan-3 3 -yloxyacetate (no. 425). Incubation: 1.3 g in $\mathrm{Me}_{2} \mathrm{SO}(390 \mathrm{ml}), 26$ flasks, medium A, 4 d , extraction III $\longrightarrow 1.26 \mathrm{~g}$ total extract. Chromat. $\mathrm{SiO}_{2}(5 \%$ deactivated; 100 g). Petrol- $\mathrm{Et}_{2} \mathrm{O}(9: 1)$ gave s.m. (634 mg). $E t_{2} \mathrm{O}-\mathrm{MeOH}(9: 1$ and $3: 2$) gave a gum (222 mg). P.l.c. of this [1 large plate, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (3:2)] gave ethyl $6 \alpha, 12 \beta, 15 \alpha$-trihydroxy- 5α-androstan- 3β-yloxyacetate (no. 477) $(54 \mathrm{mg})$ as an oil, $m / e 410\left(M^{+}\right), \nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 3610,3480$, and $1749 \mathrm{~cm}^{-1}$. Acetylation of the metabolite (no. 477) gave ethyl $6 \alpha, 12 \beta, 15 \alpha$-triacetoxy$5 \alpha$-androstan- 3β-yloxyacetate (no. 478) as an oil, m / e $536\left(M^{+}\right), \nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 1755,1740,1728$, and $1720 \mathrm{~cm}^{-1}$.
3α-(2-Acetoxyethoxy)-5 α-androstane (no. 404).* Incubation: 1.5 g in $\mathrm{Me}_{2} \mathrm{SO}(450 \mathrm{ml}), 30$ flasks, medium $\mathrm{A}, 4 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 1.63 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{SiO}_{2}(5 \%$ deactivated; 100 g$)$. Petrol- $\mathrm{Et}_{2} \mathrm{O}$ (4:1) gave s.m. $(360 \mathrm{mg})$. $\quad \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(3: 1)$ gave a mixture which, after p.l.c. [2 large plates, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (3:2)] gave 3α-(2-hydroxyethoxy)-5 α-androstane-12 $\beta, 15 \alpha$-diol (no. 459) $(210 \mathrm{mg}), m / e 352\left(M^{+}\right), \nu_{\max } 3600 \mathrm{~cm}^{-1}$. Acetylation of the
metabolite (no. 459) gave $12 \beta, 15 \alpha$-diacetoxy- 3α-(2 -acetoxy-ethoxy)- 5α-androstane (no. 460) as an oil, $\nu_{\text {max. }}\left(\mathrm{CS}_{2}\right)$ 1738,1730 , and $1233 \mathrm{~cm}^{-1}$.

3 β-(2-Acetoxyethoxy)-5 α-androstane (no. 406).* Incubation: 1.05 g in $\mathrm{Me}_{2} \mathrm{SO}(390 \mathrm{ml}), 26$ flasks, medium $\mathrm{A}, 4 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 1 \cdot 6 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{SiO}_{2}(5 \%$ deactivated; 100 g$)$. Petrol- $\mathrm{Et}_{2} \mathrm{O}$ (2:1) gave s.m. (435 mg). $\quad \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(3: 2)$ gave a mixture which, after p.l.c. $\left[2\right.$ large plates, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (3:2)] gave 3β-(2 -hydroxyethoxy)-5 α-androstane- $6 \alpha, 15 \alpha$-diol (no. 457) (321 mg), $m / e 352\left(M^{+}\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610$ and 3440 cm^{-1}. Acetylation of the diol (no. 457) gave $6 \alpha, 15 \alpha$-di-acetoxy- 3β-(2-acetoxyethoxy)- 5α-androstane (no. 458), $\nu_{\text {max }}$ $\left(\mathrm{CS}_{2}\right) 1738,1732$, and $1233 \mathrm{~cm}^{-1}$.
$5 \alpha-$-Androstan-4-one (no. 11).* (a) Incubation: 1.0 g in $\mathrm{Me}_{2} \mathrm{SO}(375 \mathrm{ml}$), 25 flasks, medium A, 4 d , extraction III $\longrightarrow 1.76 \mathrm{~g}$ total extract. P.l.c. [4 large plates, $8 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(4: 1)\right]$ gave two bands. The band of higher R_{F} afforded $11 \alpha, 15 \alpha$-dihydroxy- 5α-androstan-4-one (no. 291) * (404 mg), m.p. 203-205 (from MeOAc), $[\alpha]_{\mathrm{D}}+13^{\circ}(c 0 \cdot 7)$ (Found: C, 74.2; H, 9.6. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\max } 3618$ and $1713 \mathrm{~cm}^{-1}$. The second band gave $12 \beta, 15 \alpha$-dihydroxy- 5α-androstan-4one (no. 305) * (407 mg), m.p. 206-209 ${ }^{\circ}$ (from MeOAc), $[\alpha]_{\mathrm{D}}+45^{\circ}(c \quad 0.7)$ (Found: C, 74.6; H, 10.0. $\mathrm{C}_{\mathrm{ig} 9} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3625$ and $1718 \mathrm{~cm}^{-1}$.
(b) Transformations: Huang-Minlon reduction of $11 \alpha, 15 \alpha$-dihydroxy- 5α-androstan-4-one (no. 291) followed by oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-11,15dione (no. 52),* m.p. $155-155.5^{\circ}$ (from EtOAc), $[\alpha]_{\mathrm{p}}+80^{\circ}$ (c $\mathbf{1} \cdot 0$) (Found: C, $79.0 ; \mathrm{H}, 9.6 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C , $79.1 ; \mathrm{H}, 9.8 \%), \nu_{\text {max }} 1751$ and $1717 \mathrm{~cm}^{-1}$. Huang-Minlon reduction of $12 \beta, 15 \alpha$-dihydroxy- 5α-androstan-4-one (no. 305) followed by oxidation gave 5α-androstane-12,15-dione (no. 55), m.p. (from EtOAc) and mixed m.p. 180-183.

Oxidation of $11 \alpha, 15 \alpha$-dihydroxy- 5α-androstan-4-one (no. 291) (100 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-4,11,15trione (no. 91),* m.p. 191-193 (from EtOAc) (80 mg), $[\alpha]_{\mathrm{D}}+105^{\circ}(c 0.9)$ (Found: C, 75.7; H, 8.4. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%)$. Oxidation of $12 \beta, 15 \alpha$-di-hydroxy- 5α-androstan-4-one (no. 305) (240 mg) gave 5α-androstane-4,12,15-trione (no. 93),* m.p. 182-184 ${ }^{\circ}$ (from MeOH) (200 mg), $[\alpha]_{\mathrm{D}}+109^{\circ}(c 0.9)$ (Found: C, $75 \cdot 3 ; \mathrm{H}, 8.9 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75 \cdot 5 ; \mathrm{H}, 8.7 \%\right)$.
5α-Androstan-7-one (no. 15).* (a) Incubation: 2.0 g in $\mathrm{Me}_{2} \mathrm{SO}(300 \mathrm{ml}), 50$ flasks, medium B, 7 d , extraction $\mathrm{I} \longrightarrow 2 \mathrm{~g}$ mycelial extract +1.4 g broth extract. Chromat. of mycelial extract on $\mathrm{SiO}_{2}(50 \mathrm{~g}) . \quad \mathrm{C}_{6} \mathrm{H}_{6}$ gave s.m. (1.44 g). P.l.c. of broth extract [3 large plates, $3 \times \mathrm{C}_{6} \mathrm{H}_{6}+1 \times$ EtOAc] gave 2 bands. The band of higher R_{F} gave 12ß-hydroxy-5 α-androstan-7-one (no. 168) * $(22 \mathrm{mg})$ as a glass (Found: C, $78.3 ; \mathrm{H}, 10 \cdot 3 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.6 ; \mathrm{H}, 10.4 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610$ and 1710 cm^{-1}. The second band gave an unidentified dihydroxyketone (83 mg), m.p. $175-177^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}-60^{\circ}$ (c 0.2).
(b) Transformation: Oxidation of 12β-hydroxy- 5α-andro-stan-7-one (no. 168) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-7,12-dione (no. 50), * m.p. $168-170^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}-31^{\circ}$ (c 0.5) (Found: C, 78.7; H, 9.5. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 9.8 \%$).

Androst-5-en-7-one (no. 346).* (a) Incubation: 2 g in $\mathrm{EtOH}(160 \mathrm{ml}), 80$ flasks, medium A, 2 d, extraction $\mathrm{I} \longrightarrow 1.85 \mathrm{~g}$ mycelial extract +1.04 g broth extract. Mycelial extract contained only s.m. $(1.6 \mathrm{~g})$. P.l.c. of the
broth extract [2 large plates, $3 \times \mathrm{CHCl}_{3}$] gave 3 bands. The first band (highest R_{F}) gave 12 β-hydroxyandrost-5-en-7one (no. 169),* m.p. $166-168^{\circ}$ (from hexane- $\mathrm{C}_{6} \mathrm{H}_{6}$) (35 mg), $[\alpha]_{\mathrm{D}}-201^{\circ}(c 0.3)$ (Found: C, 79.3; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 9.8 \%$), $\nu_{\max } 3610$ and $1673 \mathrm{~cm}^{-1}$. The second band gave $4 \beta, 12 \beta$-dihydroxyandrost- 5 -en- 7 -one (no. 440) (47 mg), m.p. $207-213^{\circ}$ (from $\mathrm{C}_{6} \mathrm{H}_{6}$), $\lambda_{\max } 234 \mathrm{~nm}$ (unchanged on warming with base). The third band afforded $3 \beta, 12 \beta$-dihydroxyandrost-5-en-7-one (no. 257),* m.p. $208-209^{\circ}$ (from EtOAc) $(87 \mathrm{mg}),[\alpha]_{\mathrm{D}}-150^{\circ}(c 1 \cdot 1)$ (Found: C, $74.5 ; \mathrm{H}, 9.1 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}$, $9 \cdot 3 \%$), $\nu_{\text {max. }} 3605$ and $1675 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 237 \mathrm{~nm}(\varepsilon 13,500)$, $\lambda_{\text {max }}$ (after warming in $\mathrm{KOH}-\mathrm{EtOH}$) 281 nm .
(b) Transformations: Oxidation of 12β-hydroxyandrost-5-en-7-one (no. 169) gave androst-5-ene-7,12-dione (no. 416), m.p. 163-165 (from MeOH), $[\alpha]_{\mathrm{D}}-165^{\circ}(c 1 \cdot 0)$ (Found: C, $79 \cdot 2 ; \mathrm{H}, 9 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 7 ; \mathrm{H}, 9 \cdot 2 \%$), $\nu_{\max } 1715$ and $1680 \mathrm{~cm}^{-1}$.
Treatment of $3 \beta, 12 \beta$-dihydroxyandrost-5-en-7-one (no. 257) with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ for 12 h at $20^{\circ} \mathrm{C}$ gave $3 \beta, 12 \beta$-di-cetoxyandrost-5-en-7-one (no. 258),* m.p. 158-162 (from MeOH), $[\alpha]_{\mathrm{D}}-136^{\circ}(c 0.5)$ (Found: $\mathrm{C}, 70.8 ; \mathrm{H}, 8.2$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 71 \cdot 1 ; \mathrm{H}, 8.3 \%$), $\nu_{\text {max }} 1738,1678$, and $1240 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 233 \mathrm{~nm}(\varepsilon 14,500)$. A solution of the diacetate (no. 258) (80 mg) in $5 \% \mathrm{KOH}-\mathrm{MeOH}$ (25 ml) was heated under reflux for 1.5 h to give 12β-hydroxy-androsta-3,5-dien-7-one (no. 170),* which, after sublimation in vacuo, had m.p. $150-152^{\circ}, v_{\max } 3620,1667$, and 1627 $\mathrm{cm}^{-1}, \lambda_{\text {max. }} 277 \mathrm{~nm}(\varepsilon 21,500)$.
5α-Androstan-11-one (no. 16).* (a) Incubation: 10 g in EtOH (900 ml), 450 flasks, medium A, 2 d, extraction $\mathrm{I} \longrightarrow 10.09 \mathrm{~g}$ mycelial extract +8.5 g broth extract. Mycelial extract chromat. on $\mathrm{Al}_{2} \mathrm{O}_{3}(350 \mathrm{~g})$. Petrol$\mathrm{C}_{6} \mathrm{H}_{6}(4: 1)$ gave s.m. (3.80 g), m.p. and mixed m.p. $47-$ 50°. Broth extract chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; $700 \mathrm{~g})$. Petrol $-\mathrm{C}_{6} \mathrm{H}_{6}(1: 1)$ gave 5α-androstane- 6,11 -dione (no. 46) (21 mg), m.p. and mixed m.p. 173-174 ${ }^{\circ} . \mathrm{C}_{6} \mathrm{H}_{6}$ gave material (750 mg) which, after rechromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and elution with $\mathrm{C}_{6} \mathrm{H}_{6}$, afforded 6α-hydroxy- $5 \alpha-$ androstan-11-one (no. 158),* m.p. 139-141 ${ }^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(173$ mg), $[\alpha]_{\mathrm{D}}+82^{\circ}(c 1 \cdot 1)$ (Found: $\mathrm{C}, 78 \cdot 3 ; \mathrm{H}, 10 \cdot 1 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 6 ; \mathrm{H}, 10.4 \%$), $\nu_{\text {max }} 3620$ and $1715 \mathrm{~cm}^{-1}$. Further elution of the original column with $\mathrm{C}_{6} \mathrm{H}_{6}$ gave a mixture (1.18 g) (see later). $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Et}_{2} \mathrm{O}(1: 9)$ afforded $1 \alpha, 6 \alpha$-dihydroxy-5 α-androstan-11-one (no. 232),* m.p. 207$209^{\circ}$ (from $\mathrm{CHCl}_{3}-$ hexane) (705 mg), $[\alpha]_{\mathrm{D}}+73^{\circ}(c \quad 0.4)$ (Found: $\mathrm{C}, 74.7$; $\mathrm{H}, \mathbf{9 . 7 5} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5$; $\mathrm{H}, \mathbf{9 . 9} \%$), $\nu_{\text {max }} 3610$ and $1710 \mathrm{~cm}^{-1}$. The mixture (1.18 g) obtained from the later $\mathrm{C}_{6} \mathrm{H}_{6}$ eluates was separated by p.l.c. [2 large plates, $1 \times \mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}(1: 1)$] into 2 bands. The band of higher R_{F} gave, after further p.l.c., 6α-hydroxy5α-androstane-1,11-dione (no. 193),* m.p. 217-219 ${ }^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$) $(24 \mathrm{mg}),[\alpha]_{\mathrm{D}}+87^{\circ}(c 0.3)$ (Found: C, $74 \cdot 7$; H, 9.2. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9.3 \%$), $\nu_{\text {max. }} 3605,1727$, and $1709 \mathrm{~cm}^{-1}$. The second band gave, after further p.l.c., 15α-hydroxy-5 α-androstane-6,11-dione (no. 206),* m.p. 173$175^{\circ}$ (from $E t_{2} \mathrm{O}$) (23 mg), $[\alpha]_{\mathrm{D}}+87^{\circ}$ (c 0.1) (Found: C, $74.8 ; \mathrm{H}, 9 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9.3 \%$), $\nu_{\text {max }}$ 3610 and $1715 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of 6α-hydroxy- 5α-an-drostan-11-one (no. 158) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-andro-stane-6,11-dione (no. 46), m.p. and mixed m.p. 173$174^{\circ}$. Oxidation of $1 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-11-one (no. 232) (150 mg) gave 5α-androstane-1,6,11-trione (no. 61) * (140 mg), m.p. $198.5-200^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}+73^{\circ}$
(c $0 \cdot 7$) (Found: $\mathrm{C}, 75 \cdot 1 ; \mathrm{H}, 9.05 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 8.7 \%$). Oxidation of 6α-hydroxy- 5α-androstane-1,11-dione (no. 193) also gave 5α-androstane-1,6,11-trione (no. 61), m.p. and mixed m.p. 198-200 ${ }^{\circ}$. Oxidation of 15α-hydroxy- 5α-androstane-6,11-dione (no. 206) (76 mg) with $8 \mathrm{~N}^{-} \mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-6,11,15-tione (no. 94) * $\left(36 \mathrm{mg}\right.$), m.p. $219-223^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+89^{\circ}$ (c 0.6) (Found: C, 75.4; H, 8.6. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5$; $\mathrm{H}, 8.7 \%), \nu_{\text {max }} 1750$ and $1720 \mathrm{~cm}^{-1}$.

A solution of $1 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-11-one (no. 232) (88 mg) in $\mathrm{Ac}_{2} \mathrm{O}(8 \mathrm{ml})-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 \mathrm{ml})$ was heated at $100^{\circ} \mathrm{C}$ for 4 h . The product was purified by p.l.c. [1 medium plate, $1 \times \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}$ (3:2)] to give $1 \alpha, 6 \alpha-$ diacetoxy-5 α-androstan-11-one (no. 233),* m.p. 157-160 (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) (56 mg), $[\alpha]_{\mathrm{D}}+89^{\circ}(c \quad 1 \cdot 0)$ (Found: C, $70.9 ; \mathrm{H}, 8.8$. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max }} 1745,1715$, and $1240 \mathrm{~cm}^{-1}$.
A solution of $1 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-11-one (no. 232) (300 mg), hydrazine hydrate (100%; 3 ml), and hydrazine dihydrochloride (830 mg) in diethylene glycol $(25 \mathrm{ml})$ was heated at $130^{\circ} \mathrm{C}$ for 2.5 h . KOH (1.2 g) was added to the cooled mixture, which was then heated under N_{2} at $210^{\circ} \mathrm{C}$ for 5 h . The material isolated with CHCl_{3} was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (15% deactivated; 50 g). $\mathrm{C}_{6} \mathrm{H}_{6}$ eluted 5α-androstane-1 $\alpha, 6 \alpha$-diol (no. 216), * m.p. 245$246^{\circ}$ (from MeOH) $\left(69 \mathrm{mg}\right.$), $[\alpha]_{\mathrm{D}}+34^{\circ}$ (c 1•1) (Found: C, 77.9 ; $\mathrm{H}, 10.8 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 11.0 \%$), $\nu_{\max }$ (Nujol) $3420 \mathrm{~cm}^{-1}$. Oxidation of the diol (no. 216) (120 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$, and purification of the product by p.l.c. [2 small plates, $1 \times \mathrm{C}_{6} \mathrm{H}_{6}$] gave 5α-androstane-1,6-dione (no. 32), * m.p. $178-180^{\circ}$ (from MeOH) (32 mg), $[\alpha]_{\mathrm{D}}+85^{\circ}(c 0.5)$ (Found: C, 79.35; H, 10.0. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 9.8 \%$), $\nu_{\text {max. }} 1725-1715 \mathrm{br} \mathrm{cm}^{-1}$.
5α-Androstan-12-one (no. 17).* (a) Incubation: 360 mg in $\mathrm{Me}_{2} \mathrm{SO}(54 \mathrm{ml}), 9$ flasks, medium $\mathrm{B}, 6 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 100 \mathrm{mg}$ mycelial extract and 345 mg broth extract. Chromat. mycelial extract on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \mathrm{~g})$ gave s.m. (28 mg) in $\mathrm{C}_{6} \mathrm{H}_{6}$ eluates. The broth extract was acetylated with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ and separated into two components by p.l.c. [1 large plate, $4 \times$ petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($1: 1$)]. The band of higher R_{F} gave $6 \alpha, 15 \alpha$-diacetoxy- 5α-androstan-12-one (no. 442) $(57 \mathrm{mg})$, m.p. $222-225^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}+60^{\circ}$ (c 0.4) (Found: $\mathrm{C}, \mathbf{7 0 . 4}$; $\mathrm{H}, 8.6 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C , 70.7 ; $\mathrm{H}, 8.8 \%$), $\nu_{\text {max. }} 1737$ and $1717 \mathrm{~cm}^{-1}$. The second band gave $1 \beta, 6 \alpha, 15 \alpha$-triacetoxy- 5α-androstan-12-one (no. $466)(51 \mathrm{mg})$, as an oil, $v_{\text {max }} 1739$ and $1714 \mathrm{~cm}^{-1}$.
(b) Transformations: A solution of $6 \alpha, 15 \alpha$-diacetoxy5α-androstan-12-one (no. 442) (44 mg) in $5 \% \mathrm{KOH}-\mathrm{MeOH}$ (5 ml) was kept at $20^{\circ} \mathrm{C}$ for 12 h . Isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave $6 \alpha, 15 \alpha$-dihydroxy- 5α-androstan-12-one (no. 441) (40 mg), m.p. $187-190.5^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+43^{\circ}$ (c 0.2) (Found: C, 74.2; $\mathrm{H}, 9.6 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3615$ and $1712 \mathrm{~cm}^{-1}$. Similar hydrolysis of the triacetoxy-ketone (no. 466) gave $1 \beta, 6 \alpha, 15 \alpha$-tri-hydroxy- 5α-androstan-17-one (no. 465), as a gum, $\nu_{\max }$ 3630 and $1712 \mathrm{~cm}^{-1}$.

Oxidation of $6 \alpha, 15 \alpha$-dihydroxy- 5α-androstan-12-one (no. 441) (27 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave, after separation by p.l.c. $\left[1\right.$ small plate, $1 \times E t_{2} \mathrm{O}$], the less polar $5 \alpha, 14 \beta$ -androstane-6,12, 15-trione (no. 420) (16 mg), m.p. 205-206 ${ }^{\circ}$ (from hexane) (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\text {max }} 1749$ and $1712 \mathrm{~cm}^{-1}$, and the more polar 5α-androstane-6,12,15-trione (no. 419) (4 mg) as an oil, $\nu_{\text {max }} 1747$ and $1713 \mathrm{~cm}^{-1}$.
5α-Androstan-15-one (no. 18). (a) Incubation: 1.0 g in
$\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium A, 6 d , extraction $\mathrm{II} \longrightarrow 2.76 \mathrm{~g}$ combined extracts. Chromat. on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 60 g). CHCl_{3} eluted successively 3 fractions, A (320 mg), B (610 mg), and C (350 mg), which were further purified by p.l.c. Fraction A [1 large plate, $2 \times$ petrol$\left.\mathrm{Et}_{2} \mathrm{O}(9: 1)\right]$ gave s.m. (39 mg) and $5 \alpha, 14 \beta$-androstan-15-one (no. 413) (13 mg). Fraction B [2 large plates, $3 \times$ petrol$\mathrm{Me}_{2} \mathrm{CO}$ (4:1)] gave $6 \alpha, 12 \beta$-dihydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 443) (228 mg), m.p. $149-151^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+1.0^{\circ}(c 0.9)$ (Found: C, $74.5 ; \mathrm{H}, 9.8$. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3620$ and 1740 cm^{-1}, c.d. $303 \mathrm{~nm}(\Delta \varepsilon-2 \cdot 07)$. Fraction C [1 large plate, $3 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(2: 1)\right]$ gave $2 \alpha, 12 \beta$-dihydroxy- 5α-andros-tan-15-one (no. 438) (90 mg), m.p. $189-191^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+43^{\circ}(c 0.25)$ (Found: C, $74 \cdot 2 ; \mathrm{H}, 10 \cdot 1$. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max. }} 3620$ and 1740 cm^{-1}.
(b) Transformations: Huang-Minlon reduction of $6 \alpha, 12 \beta-$ dihydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 443) (60 mg) under the forcing conditions described previously, ${ }^{14}$ and fractional crystallisation of the product from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane gave 5α-androstane- $5 \alpha, 12 \beta$-diol (no. 222) (5 mg), m.p. and mixed m.p. 195-198 . The material recovered from the mother liquors of these crystallisations was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to give 5α-androstane-6,12-dione (no. 47) (4 mg), m.p. (from hexane) and mixed m.p. $180-$ 183°. Oxidation of $6 \alpha, 12 \beta$-dihydroxy- $5 \alpha, 14 \beta$-androstan15 -one (no. 443) (100 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave $5 \alpha, 14 \beta$ -androstane-6,12,15-trione (no. 420) (96 mg), m.p. (from hexane) and mixed m.p. 205-206 .

Acetylation of $2 \alpha, 12 \beta$-dihydroxy- 5α-androstan-15-one (no. 438) (40 mg) gave $2 \alpha, 12 \beta$-diacetoxy- 5α-androstan-15-one (no. 439) (43 mg), m.p. 172-174 ${ }^{\circ}$ (from hexane), $[\alpha]_{D}$ $-11^{\circ}(c 1.0)$ (Found: C, $70.6 ; \mathrm{H}, 8.9 . \quad \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, $70.7 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max. }} 1740 \mathrm{~cm}^{-1}$, c.d. $295 \mathrm{~nm}(\Delta \varepsilon+3 \cdot 29)$.
$5 \alpha, 14 \beta-$ Androstan-15-one (no. 413). (a) Incubation: 2.0 g in $\mathrm{Me}_{2} \mathrm{SO}(300 \mathrm{ml}), 50$ flasks, medium B, 6 d , extraction $\mathrm{II} \longrightarrow 2.3 \mathrm{~g}$ broth extract and 850 mg mycelial extract. The mycelial extract was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 20 g) in petrol- $\mathrm{Et}_{2} \mathrm{O}(9: 1)$, and further purified by p.l.c. [l large plate, $3 \times$ petrol $-\mathrm{Et}_{2} \mathrm{O}(9: 1)$] to give s.m. $(450 \mathrm{mg})$ and 5α-androstan-15-one (no. 18) (12 mg). The broth extract was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 20 g) in CHCl_{3} and then separated into 3 bands by p.l.c. [2 large plates, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}(4: 1)$]. The band of highest R_{F} gave $7 \beta, 12 \beta$-dihydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 445) (585 mg), m.p. $169-170^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-34^{\circ}(c \quad 0.9)$ (Found: C, 74.3; H, 9.7. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $C, 74.5 ; H, 9.9 \%$) ; i.r. and c.d. see Scheme. The second band gave $12 \beta, 14$-dihydroxy- $5 \alpha, 14 \beta$-androstan-15one (no. 446) (29 mg) as an oil, $m / e 306\left(M^{+}\right), \nu_{\text {max }} 3625$, 3600 , and $1744 \mathrm{~cm}^{-1}$. The third band gave $7 \beta, 12 \beta, 14-$ trihydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 473) (179 mg), m.p. 146-148 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-16.5^{\circ}$ (c 0.5) (Found: C, 70.9; H, 9.3. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 70 \cdot 8$; H, $9 \cdot 4 \%$); i.r. and c.d. see Scheme.
(b) Transformations: Vigorous Huang-Minlon reduction ${ }^{14}$ of $7 \beta, 12 \beta$-dihydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 445) (250 mg), and acetylation of the product afforded material which was purified by p.l.c. [1 large plate, $4 \times$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}(9: 1)\right]$. The first band (higher R_{F}) gave $7 \beta, 12 \beta$-diacetoxy- $5 \alpha, 14 \beta$-androstane (no. 433) (157 mg), m.p. $104-106^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+33^{\circ}$ (cl $1 \cdot 0$) (Found: C, $73.5 ; \mathrm{H}, \mathbf{9 . 5} . \quad \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.4 ; \mathrm{H}$, $9 \cdot 6 \%)$, $\nu_{\text {max. }} 1735 \mathrm{~cm}^{-1}$. The second band gave $7 \beta, 12 \beta-$
diacetoxy-5 α-androstane (no. 431) (73 mg) as an oil (Found: C, $73.3 ; \mathrm{H}, 9.5 \%$), $\nu_{\text {max }} 1735 \mathrm{~cm}^{-1}$. Treatment of the 14β-diacetate (no. 433) (140 mg) with $\mathrm{LiAlH}_{4}(25 \mathrm{mg})$ in refluxing $\mathrm{Et}_{2} \mathrm{O}$ gave $5 \alpha, 14 \beta$-androstane-7 $\beta, 12 \beta$-diol (no. 432) (116 mg), m.p. $169-170^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+48.5^{\circ}$ (c 0.8) (Found: $\mathrm{C}, 78.0 ; \mathrm{H}, 11.0 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires C, $78.0 ; \mathrm{H}, 11.0 \%$), $\nu_{\text {max }} 3620 \mathrm{~cm}^{-1}$. Similar treatment of the 14α-diacetate (no. 431) gave 5α-androstane- $7 \beta, 12 \beta$-diol (no. 430), m.p. $144-145^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+36^{\circ}(c 0.4)$ (Found: $\mathrm{C}, 77.9 ; \mathrm{H}, 11.1 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 0$; H, $11 \cdot 0 \%$), $\nu_{\text {max. }} 3620 \mathrm{~cm}^{-1}$.

Oxidation of $5 \alpha, 14 \beta$-androstane- $7 \beta, 12 \beta$-diol (no. 432) $(90 \mathrm{mg})$ with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave $5 \alpha, 14 \beta$-androstane- 7,12 -dione (no. 415) $(80 \mathrm{mg})$, m.p. $142-144^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}$ $+125^{\circ}(c 0 \cdot 6)$ (Found: C, 78.9; H, 9.6. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C, $79 \cdot 1 ; \mathrm{H}, 9.6 \%$), $\nu_{\text {max }} 1710 \mathrm{~cm}^{-1}$. Similar oxidation of 5α-androstane- $7 \beta, 12 \beta$-diol (no. 430) gave 5α-androstane-7,12-dione (no. 50),* m.p. (from hexane) and mixed m.p. $168-170^{\circ}$. Similar oxidation of $7 \beta, 12 \beta$-dihydroxy- $5 \alpha, 14 \beta$ -androstan-15-one (no. 445) gave $5 \alpha, 14 \beta$-androstane-7,12,15trione (no. 421), m.p. 175-177 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-28^{\circ}(c \quad 0.2)$ (Found: C, 75.6; H, 8.7. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\text {max }} 1750$ and $1712 \mathrm{~cm}^{-1}$.

Acetylation of $7 \beta, 12 \beta, 14$-trihydroxy- $5 \alpha, 14 \beta$-androstan15 -one (no. 473) (50 mg) with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ at $20^{\circ} \mathrm{C}$ gave $7 \beta, 12 \beta$-diacetoxy-14-hydroxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 474) (43 mg), m.p. $97-99^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+91^{\circ}$ (c $\mathbf{1} \cdot 0$) (Found: $\mathrm{C}, 67.8 ; \mathrm{H}, 8.5 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires C , $67.9 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max. }} 3709,3500,1757,1744$, and 1740 cm^{-1}.

Oxidation of the trihydroxy-ketone (no. 473) (20 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ at $0^{\circ} \mathrm{C}$ gave $7 \beta, 14$-dihydroxy- $5 \alpha, 14 \beta-$ androstane-12,15-dione (no. 451) (16 mg), m.p. $194-196^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) (Found: $\mathrm{C}, 71 \cdot 0 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max }} 3620,1744$, and $1712 \mathrm{~cm}^{-1}$. A solution of the trihydroxy-ketone (no. 473) (60 mg) and $\mathrm{TsOH}, \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg})$ in $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$ (freshly distilled; 6 ml) was stirred at $20^{\circ} \mathrm{C}$ for 30 min . Work-up and p.l.c. [1 small plate, $2 \times$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}(1: 1)\right]$ gave 12β-hydroxy$7 \beta, 14$-isopropylidenedioxy- $5 \alpha, 14 \beta$-androstan-15-one (no. 475) $(62 \mathrm{mg})$ as a glass, $[\alpha]_{\mathrm{D}}-55^{\circ}(c 0 \cdot 6)$ (Found: C, 73.2; $\mathrm{H}, 9.3 . \quad \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 72 \cdot 9$; $\mathrm{H}, 9.4 \%$), $\nu_{\text {max. }} 3630$ and $1742 \mathrm{~cm}^{-1}$. A solution of the trihydroxy-ketone (no. 473) $(60 \mathrm{mg})$ and $\mathrm{LiAlH}_{4}(30 \mathrm{mg})$ in THF (20 ml) was stirred at $0^{\circ} \mathrm{C}$ for 30 min to give $5 \alpha, 14 \beta$-androstane- $7 \beta, 12 \beta, 14,15 \beta-$ tetraol (no. 482) (54 mg), m.p. 269-272 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+7.5^{\circ}$ (c 0.2) (Found: C, 70.5; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max. }}$ (Nujol) 3450 cm^{-1}.

Syntheses of 14-Hydroxy-5 $\mathbf{1}$,14 β-androstan-15-one (no. 426) via 5α-Androst-14-ene (no. 412).-A mixture of 5α-androstan-15 β-ol (no. 368) * (1.2 g) and $\mathrm{MeSO}_{2} \mathrm{Cl}$ $(12 \mathrm{ml})$ in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(12 \mathrm{ml})-\mathrm{Me}_{2} \mathrm{CO}(25 \mathrm{ml})$ was kept at $20^{\circ} \mathrm{C}$ for 18 h . The mixture was acidified slowly with $2 \mathrm{~N}-\mathrm{HCl}$ at $0^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Chromatography on $\mathrm{SiO}_{2}(40 \mathrm{~g})$ gave 5α-androst-14-ene (no. 412) (960 mg ; eluted with petrol), m.p. $38-39^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+32^{\circ}(c \quad 0.9)$ (Found: C, 88.5; H, 11.5. $\mathrm{C}_{19} \mathrm{H}_{30}$ requires $\mathrm{C}, 88.3 ; \mathrm{H}, 11.7 \%$), $\nu_{\text {max. }} 3060$ and $1647 \mathrm{~cm}^{-1}$.

Ice-cold solutions of monoperoxyphthalic acid ($6 \cdot 4 \mathrm{~g}$) in $E t_{2} \mathrm{O}(80 \mathrm{ml})$ and 5α-androst-14-ene (760 mg) in $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{ml})$ were mixed, and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solution was washed successively with 10% aq. solutions of $\mathrm{Kl}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$, and NaHCO_{3}, dried, and evaporated to give an oil $(830 \mathrm{mg})$. P.l.c. [2 large plates, $3 \times$ petrol-
$\left.\mathrm{Me}_{2} \mathrm{CO}(49: 1)\right]$ gave $14 \alpha, 15 \alpha$-epoxy- 5α-androstane (no. 436) (252 mg ; higher R_{F}), m.p. 75-76 (from MeOH- $\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+21.5^{\circ}(c \quad 1 \cdot 0)$ (Found: C, 83.2; H, 10.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 2 ; \mathrm{H}, 11.0 \%)$, $\nu_{\max } 3022 \mathrm{~cm}^{-1}$; and $14,15 \beta-$ epoxy-5 $\alpha, 14 \beta$-androstane (no. 437) (187 mg ; lower R_{F}), m.p. $57-59^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{p}}-4^{\circ}(c 1 \cdot 1)$ (Found: $\mathrm{C}, 83.2 ; \mathrm{H}, 10.9 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 83.2 ; \mathrm{H}, 11.0 \%$), $\nu_{\text {max. }} 3035 \mathrm{~cm}^{-1}$. A mixture (ca. 1:1) of the epoxides (251 mg) was obtained from the intermediate region of the plate.

A solution of the $14 \alpha, 15 \alpha$-epoxide (no. 436) (100 mg) in THF $(10 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})-2 \mathrm{~N}-\mathrm{HCl}(2 \mathrm{ml})$ was kept at $20^{\circ} \mathrm{C}$ for 1 h . Extraction with $\mathrm{Et}_{2} \mathrm{O}$ and p.l.c. [l small plate, $2 \times$ petrol $-\mathrm{Et}_{2} \mathrm{O}$ (1:1)] gave $5 \alpha, 14 \beta$-androstan15 -one (no. 413) (36 mg) and $5 \alpha, 14 \beta$-androstane-14,15 α-diol (no. 434) (53 mg), m.p. $168-169^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+107^{\circ}(c 0.5)$ (Found: C, $78.0 ; \mathrm{H}, 10.9 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 10.9 \%$), $\nu_{\text {max }} 3630 \mathrm{~cm}^{-1}$. Similar treatment of the $14 \beta, 15 \beta$-epoxide (no. 437) (80 mg) for 2 h gave s.m. (52 mg) and $5 \alpha, 14 \beta$-androstane-14,15 -diol (no. 435) (24 mg), m.p. $119-122^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}-15^{\circ}$ (c 0.5) (Found: C, 77.7; H, 10.9. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires C , $78.0 ; \mathrm{H}, 11 \cdot 0 \%$), $\nu_{\text {max }} 3634$ and $3520 \mathrm{~cm}^{-1}$.

Oxidation of $5 \alpha, 14 \beta$-androstane-14,15 1 -diol (no. 434) (70 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ at $0^{\circ} \mathrm{C}$ gave 14 -hydro $x y-5 \alpha, 14 \beta-$ androstan-15-one (no. 426) (60 mg), m.p. $128-130^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+50^{\circ}(c 0.2)$ (Found: C, 78.7; H, 10.5 .
 spectral data.
$5 \alpha-$ Androstan-16-one (no. 19).* (a) Incubation: 2.8 g in $\mathrm{Me}_{2} \mathrm{SO}(910 \mathrm{ml}), 56$ flasks, medium A, 4 d , extraction III $\longrightarrow 3.0$ g total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; $150 \mathrm{~g})$. Petrol-Et $\mathrm{E}_{2} \mathrm{O}(1: 1)$ gave s.m. $(875 \mathrm{mg}), \mathrm{m} . \mathrm{p}$. and mixed m.p. 106- 107°. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(20: 1)$ gave a mixture $(1 \cdot 43 \mathrm{~g})$ which was separated by p.l.c. [3 large plates, $\left.7 \times \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOH}(1: 1)\right]$ into 2 bands. The band of higher R_{F} gave $6 \alpha, 11 \alpha$-dihydroxy- 5α-androstan-16-one (no. 272),* m.p. $207-208^{\circ}$ (from EtOAc) $\left(740 \mathrm{mg}\right.$), $[\alpha]_{\mathrm{D}}-170^{\circ}$ (c 1•1) (Found: C, $74.6 ; \mathrm{H}, 9.8 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%$). The second band afforded $1 \beta, 6 \alpha-d i h y d r$ -oxy-5 α-androstan-16-one (no. 234),* m.p. 235- 237° (from EtOAc) (195 mg), $[\alpha]_{\mathrm{D}}-165^{\circ}$ (c 1-2) (Found: C, 75.4; $\mathrm{H}, 8.7$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 1748, 1713, and $1711 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of $6 \alpha, 11 \alpha$-dihydroxy5α-androstan-16-one (no. 272) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-6,11,16-trione (no. 95),* m.p. 235-237 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}-118^{\circ}$ (c 0.8) (Found: C, 75.4 ; H, 8.7. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 5 ; \mathrm{H}, 8.7 \%$). Similar oxidation of $1 \beta, 6 \alpha$-dihydroxy- 5α-androstan-11-one (no. 234) gave 5α-androstane-1,6,16-trione (no. 355),* m.p. 224-226 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}-73^{\circ}$ (c 0.7) (Found: C, 75.7; H, 8.7. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 5 ; \mathrm{H}, 8.7 \%$).

The mixture of hydroxylated metabolites (250 mg) from the incubation was reduced by the usual HuangMinlon procedure, and the crude product was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$. Separation by p.l.c. [1 large plate, $3 \times$ petrol-EtOAc ($10: 1$)] gave 5α-androstane-6,11-dione (no. 46) (125 mg), m.p. and mixed m.p. $173-174^{\circ}$, and 5α-andro-stane-1,6-dione (no. 32) (32 mg), m.p. and mixed m.p. 180°.
5α-Androstan-17-one (no. 20).* (a) Incubation: $2 \cdot 2 \mathrm{~g}$ in $\mathrm{EtOH}(220 \mathrm{ml}), 44$ flasks, medium A, 2 d , extraction III \longrightarrow 2.4 g total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 100 g) $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Et}_{2} \mathrm{O}$ (4:1) gave s.m. (875 mg), m.p. and mixed
m.p. $117-117.5^{\circ}$. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(20: 1)$ gave $1 \beta, 6 \alpha-d i-$ hydroxy-5 -androstan-17-one (no. 235),* m.p. 200-203 ${ }^{\circ}$ (from hexane- $\mathrm{Me}_{2} \mathrm{CO}$) (700 mg), $[\alpha]_{\mathrm{D}}+89^{\circ}(c 1 \cdot 0)$ (Found: $\mathrm{C}, 74 \cdot 3 ; \mathrm{H}, 9.9 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%$).
(b) Transformations: Oxidation of $1 \beta, 6 \alpha$-dihydroxy5α-androstan-17-one (no. 235) gave 5α-androstane-1,6,17trione (no. 64), ${ }^{*}$ m.p. $202-203^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+174^{\circ}$ (c 0.7) (Found: C, $75.4 ; \mathrm{H}, 8.8 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 8.7 \%$). A solution of the trione (no. 64) (125 mg) in $5 \% \mathrm{KOH}-\mathrm{MeOH}(25 \mathrm{ml})$ was heated under reflux for 2 h to give 5ß-androstane-1,6,17-trione (no. 356),* m.p. $243-244^{\circ}$ (from EtOH) (100 mg), $[\alpha]_{\mathrm{D}}-40^{\circ}$ (c 0.5 .5) (Found: $\mathrm{C}, 75 \cdot 4 ; \mathrm{H}, 8.8 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}$, 8.7\%).

Huang-Minlon reduction of the dihydroxy-ketone (no. 235) $(100 \mathrm{mg})$, and oxidation of the product with 8 N $\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-1,6-dione (no. 32) (45 mg), $\mathrm{m} . \mathrm{p}$. and mixed m.p. $177-179^{\circ}$.

53-Androstan-17-one (no. 21).* Incubation: 3.6 g in $\mathrm{EtOH}(360 \mathrm{ml}), 72$ flasks, medium A, 2 d , extraction III $\rightarrow 4.0 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 160 g). Petrol-Et $\mathrm{E}_{2} \mathrm{O}$ (1:1) gave s.m. (2.0 g). Et $\mathrm{E}_{2} \mathrm{O}$ $\mathrm{MeOH}(10: 1)$ gave a mixture (900 mg), separation of which was attempted by p.l.c. [3 large plates, $12 \times$ petrolEtOAc (19:1)]. Only one product was obtained pure. This was $12 \beta, 15 \alpha$-dihydroxy- 5β-androstan-17-one (no. 447) (25 mg), m.p. 191-193 ${ }^{\circ}$ (from EtOAc), $[\alpha]_{\mathrm{D}}+85^{\circ}$ ($c 0.2$) (Found: $\mathrm{C}, 74.4 ; \mathrm{H}, 9.8 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5$; $\mathrm{H}, 9.9 \%$), $\nu_{\text {max. }}$ (conditions of ref. 9) $3631,3609,3568$, and $1735 \mathrm{~cm}^{-1}$.
$5 \alpha-$ Androstan-17 β-ol (no. 138).* (a) Incubation: 2.0 g in EtOH (100 ml), 50 flasks, medium B, 6 d , extraction II $\longrightarrow 2.0 \mathrm{~g}$ mycelial extract +2.2 g broth extract. Chromat. mycelial extract on $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; $25 \mathrm{~g})$ gave s.m. (810 mg) from the petrol- $\mathrm{Et}_{2} \mathrm{O}(10: 1)$ eluates. $E t_{2} \mathrm{O}-\mathrm{MeOH}(10: 1)$ gave a mixture (226 mg). Chromat. broth extract on $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 25 g$)$ gave a mixture (760 mg) eluted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(10: 1)$. P.l.c. of the combined mixtures from both columns [3 large plates, $3 \times \mathrm{Et}_{2} \mathrm{O}$] gave two bands. The band of higher R_{F} afforded 5α-androstane- $1 \beta, 6 \alpha, 17 \beta$-triol (no. 452) (230 mg), m.p. $249-250^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}+36^{\circ}$ (c 0.7) (Found: C, 73.6; H, 10.0. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0$; $\mathrm{H}, 10.5 \%$). The second band gave 5α-androstane$6 \alpha, 11 \alpha, 17 \beta$-triol (no. 462) (78 mg), m.p. $225-226^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}+20^{\circ}(c 0.5)$ (Found: C, 74.1; H, 10.5. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 10 \cdot 5 \%$).
(b) Transformations: Oxidation of 5α-androstane$1 \beta, 6 \alpha, 17 \beta$-triol gave 5α-androstane-1,6,17-trione (no. 64), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed m.p. 202-203 ${ }^{\circ}$. Oxidation of 5α-androstane- $6 \alpha, 11 \alpha, 17 \beta$-triol (no. 462) gave 5α-andro-stane-6,11,17-trione (no. 96),* m.p. 212-216 ${ }^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+131^{\circ}(c 1 \cdot 0)$ (Found: C, 75.1; H, 8.9. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$).

D-Homo-5 α-androstan-17a-one (no. 348).* (a) Incubation: 1.0 g in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium B, 4 d , extraction III $\longrightarrow 1.2 \mathrm{~g}$ total extract. P.l.c. [3 large plates, $5 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(4: 1)\right]$ gave 3 main bands. The first band (highest R_{F}) afforded $1 \beta, 7 \beta, 15 \alpha$-trihydroxy-D-homo- $5 \alpha-$ androstan-17a-one (no. 467) (75 mg), m.p. 204-206 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+38^{\circ}(c \quad 0.5)$, m/e $336\left(M^{+}\right)$; $\nu_{\text {max }}$ see Scheme. The second band gave $6 \alpha, 11 \alpha$-dihydroxy-D-homo-5 α-androstan-17a-one (no. 449) (110 mg), m.p. $210-211.5^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-43^{\circ}$ (c 0.5) (Found: $\mathrm{C}, 75 \cdot 2 ; \mathrm{H}, 10 \cdot 0 . \quad \mathrm{C}_{90} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0$;
$\mathrm{H}, 10 \cdot 1 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3602$ and $1708 \mathrm{~cm}^{-1}$. The third band gave $7 \beta, 12 \beta, 15 \alpha$-trihydroxy-D-homo- 5α-androstan-17aone (no. 476) (132 mg), m.p. 213-215 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+42^{\circ}(c 0.45)$ (Found: C, 69.9; H, 9.35. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}, \mathrm{Me}_{2} \mathrm{CO}$ requires C, $70.0 ; \mathrm{H}, 9.7 \%$); $\nu_{\text {max. }}$ (after repeatedly dissolving in CCl_{4} and evaporating) see Scheme.
(b) Transformations: $1 \beta, 7 \beta, 15 \alpha$-Trihydroxy-D-homo- $5 \alpha-$ androstan-17a-one (no. 467) (100 mg) was reduced by the Huang-Minlon method. A solution of the product in $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{ml})$ containing $10 \mathrm{~N}-\mathrm{HCl}(0.4 \mathrm{ml})$ was heated under reflux for 30 min to give $7 \beta, 15 \alpha$-isopropylidenedioxy-D-homo-5 α-androstan- 1β-ol (no. 456) as an oil, $[\alpha]_{\mathrm{D}}-10^{\circ}$ (c 0.55) (Found: C, $76.0 ; \mathrm{H}, 10.6 . \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$ requires C, $76.2 ; \mathrm{H}, 10.6 \%$), $\nu_{\max } 3620 \mathrm{~cm}^{-1}$. Similar treatment of $7 \beta, 12 \beta, 15 \alpha$-trihydroxy-D-homo- 5α-androstan-17a-one (no. 476) afforded $7 \beta, 15 \alpha$-isopropylidenedioxy-D-homo- 5α-andro-stan-123-ol (no. 464), m.p. 148- 150° (from hexane), $[\alpha]_{\mathrm{D}}$ $+20^{\circ}(c \quad 0.25)$ (Found: C, 76.1; H, 10.45. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.2 ; \mathrm{H}, 10.6 \%$), $\nu_{\text {max }} 3620 \mathrm{~cm}^{-1}$.

3-Methylene-5 α-androstan-17 1 -ol (no. 139).* (a) Incubation: 3.7 g in EtOH (370 ml), 74 flasks, medium A, 2 d , extraction III $\longrightarrow 4.0 \mathrm{~g}$ total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; $(160 \mathrm{~g})$. Petrol-Et $\mathrm{E}_{2} \mathrm{O}(1: 1)$ gave s.m. $(2 \cdot 0 \mathrm{~g}) . \mathrm{Et}_{2} \mathrm{O}-$ $\mathrm{MeOH}(20: 1)$ gave 3 -methylene- 5α-androstane $-1 \beta, 6 \alpha, 17 \beta-$ triol (no. 453), m.p. 252-253 ${ }^{\circ}$ (from MeOH) (1.6 g), $[\alpha]_{\mathrm{D}}$ $+43^{\circ}(c 0.5)$ (Found: C, 74.7) H, 10.1. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ requires C, $75.0 ; \mathrm{H}, 10.1 \%$), $\nu_{\text {max. }}$ (Nujol) 3290 and $891 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of 3 -methylene- 5α -androstane- $1 \beta, 6 \alpha, 17 \beta$-triol (no. 453) (100 mg) with 8 N $\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 3 -methylene- 5α-androstane-1,6,17-trione (no. 65) * (80 mg), m.p. $177-178^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+129^{\circ}$ (c 0.7) (Found: $\mathrm{C}, 76.5$; $\mathrm{H}, 8.4 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $76.4 ; \mathrm{H}, 8.3 \%)$, $\nu_{\text {max. }} 1745,1719$, and $891 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 298 \mathrm{~nm}$ (ε 176).
Acetylation of the triol (no. 453) (1.87 g) with $\mathrm{Ac}_{2} \mathrm{O}$ $(50 \mathrm{ml})-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(5 \mathrm{ml})$ for 5 h at $20^{\circ} \mathrm{C}$ gave an oil (1.8 g). Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated; 50 g) and elution with petrol- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ gave $1 \beta, 6 \alpha, 17 \beta$-triacetoxy-3-methylene- $5 \alpha-$ androstane (no. 454) (100 mg), m.p. 198- 199° (from EtOH), $\left.{ }_{[} \alpha\right]_{\mathrm{p}}+21^{\circ}(c \quad 0.9)$ (Found: C, 70.1; H, 8.7. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 8.6 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1740$ and 895 cm^{-1}. Further elution with the same solvent mixture gave $\quad 6 \alpha, 17 \beta$-diacetoxy-3-methylene- 5α-androstan-1 β-ol (no. 455) (400 mg), m.p. 201-203 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+33^{\circ}$ (c 0.6) (Found: C, $71.3 ; \mathrm{H}, 8.7 . \quad \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}$ requires C , $71.3 ; \mathrm{H}, 9.0 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3621,1740$, and $895 \mathrm{~cm}^{-1}$. $E t_{2} \mathrm{O}$ eluted s.m. (790 mg), m.p. and mixed m.p. 251$253^{\circ}$.

Sequence Leading to 3-Methyl-5ß-androst-2-ene-1,6,17trione (no. 357). -Oxidation of $6 \alpha, 17 \beta$-diacetoxy- 3 -methyl-ene- 5α-androstan-1 β-ol (no. 455) (350 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave $6 \alpha, 17 \beta$-diacetoxy- 3 -methylene- 5α-androstan-1-one (no. 279) * (310 mg), m.p. $172-173^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+61^{\circ}$ (c 0.9) (Found: $\mathrm{C}, 71 \cdot 4 ; \mathrm{H}, 8.7 . \quad \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C , $71.6 ; \mathrm{H}, 8.5 \%), v_{\max }\left(\mathrm{CHCl}_{3}\right) 1742,1720$, and $899 \mathrm{~cm}^{-1}$. A solution of this diacetoxy-ketone (270 mg) in 10% $\mathrm{K}^{-} \mathrm{OH}-\mathrm{EtOH}(50 \mathrm{ml})$ was kept at $20^{\circ} \mathrm{C}$ for 12 h . Work-up gave $6 \alpha, 17 \beta$-dihydroxy- 3 -methyl- 5α-androst-2-en-1-one (no. $278) *\left(210 \mathrm{mg}\right.$), m.p. $232-233^{\circ}$ (from EtOAc), $[\alpha]_{\mathrm{D}}+167^{\circ}$
(c 1.0) (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, \mathbf{9 . 3} . \quad \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $75.4 ; \mathrm{H}, 9.5 \%$), $\nu_{\text {max }} 3624$ and $1675 \mathrm{~cm}^{-1}$.

Oxidation of $6 \alpha, 17 \beta$-dihydroxy-3-methyl- 5α-androst-2-en-1-one (no. 278) (50 mg) afforded 3 -methyl- 5α-androst-2-ene-1,6,17-trione (no. 66) * (43 mg), m.p. 178-179 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+102^{\circ}(c 0 \cdot 1)$ (Found: C, $\mathbf{7 6} \cdot 4 ; \mathrm{H}, \mathbf{8} 4$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 8.3 \%$), $\nu_{\text {max. }} 1744,1718$, and $1676 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 236 \mathrm{~nm}(\varepsilon 8160)$. A solution of this trione (25 mg) in $5 \% \mathrm{KOH}-\mathrm{MeOH}(10 \mathrm{ml})$ was heated under reflux for 2 h to give 3-methyl-5 5 -androst-2-ene-1,6,17trione (no. 357) * (22 mg), m.p. $235-237^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-11^{\circ}(c 0.3)$ (Found: C, 76.5; H, 8.4. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 76.4 ; \mathrm{H}, 8.3 \%\right)$, $\nu_{\text {max. }} 1745,1716$. and $1672 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 236 \mathrm{~nm}(\varepsilon 8720)$.

Sequence Leading to $5 \alpha-$ Androst-1-ene-3,6,17-trione (no. 79).-A solution of $1 \beta, 6 \alpha, 17 \beta$-triacetoxy- 3 -methylene- 5α androstane (no. 454) ($1 \cdot 14 \mathrm{~g}$) in $\mathrm{MeOH}(100 \mathrm{ml})$ was treated with O_{3} at $-20^{\circ} \mathrm{C}$ for 1 h . Glacial $\mathrm{AcOH}(57 \mathrm{ml})$ and then Zn dust (23 g) were added to the stirred solution, and the temperature of the mixture was allowed to rise to about $35^{\circ} \mathrm{C}$. The mixture was filtered, and the filtrate was concentrated to ca. 70 ml at 50° and 2 cmHg . Dilution with $\mathrm{H}_{2} \mathrm{O}$ and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $1 \beta, 6 \alpha, 17 \beta-$ triacetoxy-5 α-androstan-3-one (no. 333)* (1.03 g), m.p. 175-177 ${ }^{\circ}\left(\right.$ from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$), $[\alpha]_{\mathrm{D}}+34^{\circ}(c 1 \cdot 1)$ (Found: C, $66.7 ; \mathrm{H}, 8.0 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66 \cdot 9 ; \mathrm{H}, 8.1 \%$), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1737 \mathrm{~cm}^{-1}$. A solution of this triacetoxymetone (400 mg) in $1 \% \mathrm{KOH}-\mathrm{EtOH}(50 \mathrm{ml})$ was kept at $20^{\circ} \mathrm{C}$ for 12 h . Isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave $6 \alpha, 17 \beta$-dihydroxy5α-androst-1-en-3-one (no. 444) (230 mg), m.p. 277-279 ${ }^{\circ}$ (from EtOAc-EtOH), $[\alpha]_{\mathrm{D}}+70^{\circ}(c \quad 0.7)$ (Found: C, 75.1; $\mathrm{H}, 9.3 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, $75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), ${ }_{\max .}$ (Nujol) 3290 and $1680 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 228 \mathrm{~nm}(\varepsilon 9670)$.

Oxidation of the dihydroxy-ketone (no. 444) (50 mg) gave 5α-androst-1-ene-3,6,17-trione (no. 79),* m.p. 223$225^{\circ}$ (from EtOAc) (42 mg), $[\alpha]_{\mathrm{p}}+2^{\circ}(c 0 \cdot 3)$ (Found: C, $76 \cdot 1 ; \mathrm{H}, 8 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 8 \cdot 1 \%$), $\nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 1740,1718$, and $1687 \mathrm{~cm}^{-1}$. Hydrogenation of this triketone (no. 79) (100 mg) in EtOAc-HOAc ($10: 1 ; 20 \mathrm{ml}$) over $\mathrm{PtO}_{2}(10 \mathrm{mg})$ at $20^{\circ} \mathrm{C}$, followed by oxidation of the product, gave 5α-androstane-3,6,17-trione (no. 78) * (80 mg), m.p. $194-195^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+71^{\circ}$ (c 0.6) (lit., ${ }^{15}$ m.p. $191-193^{\circ},[\alpha]_{\mathrm{D}}+67^{\circ}$).

A solution of $1 \beta, 6 \alpha, 17 \beta$-triacetoxy- 5α-androstan- 3 -one (no. 333) $(750 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{ml})$ was added to a stirred suspension of $\mathrm{LiAlH}_{4}(750 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{ml})$. The mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$, and worked up to give 5α-androstane-1 $\beta, 3 \beta, 6 \alpha, 17 \beta$-tetraol (no. 482) (410 mg), m.p. $335-338^{\circ}$ (from MeOH) (Found: C, $70 \cdot 4$; H, 9.8 . $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{C}, 70 \cdot 3 ; \mathrm{H}, 9.9 \%$), $\nu_{\max .}$ (Nujol) $3360-$ $3280 \mathrm{~cm}^{-1}$.

We thank the S.R.C. for a studentship (to P. C. C.) and a Research grant, the Rhodes Trust for a scholarship (to I. M. C.), Imperial Chemical Industries Ltd. for a postdoctoral fellowship (to W. A. D.), Magdalen College, Oxford, for a Perkin Research Studentship (to P. D. W.), and Glaxo Laboratories, Ltd. for a grant and gifts of chemicals.
[2/645 Received, 20th March, 1972]

[^0]: 10 A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, V. Kumar, and G. D. Meakins, J.C.S. Perkin I, 1972, 492.
 ${ }_{11}$ I. M. Clark, A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and A. Pendlebury, J.C.S. Perkin I, 1972, 499.

[^1]: 12 A. Schubert and R. Siebert, Chem. Ber., 1958, 91, 1856.

